• Title/Summary/Keyword: Real-Time Correction

Search Result 475, Processing Time 0.021 seconds

Stability Assessment of FKP System by NGII using Long-term Analysis of NTRIP Correction Signal (NTRIP 보정신호 분석을 통한 국토지리정보원 FKP NRTK 시스템 안정성 평가)

  • Kim, Min-Ho;Bae, Tae-Suk
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.31 no.4
    • /
    • pp.321-329
    • /
    • 2013
  • Despite the advantage of unlimited access, there are insufficient studies for the accuracy and stability of FKP that blocks the spread of the system for various applications. Therefore, we performed a long-term analysis from continuous real-time positioning, and investigated the error characteristics dependent on the size and the surrounding environment. The FKP shows significant changes in the positioning accuracy at different times of day, where the accuracy during daytime is worse than that of nighttime. In addition, the size and deviation of FKP correction may change with the ionospheric conditions, and high correlation between ambiguity resolution rate and the deviation of correction was observed. The receivers continuously request the correction information in order to cope with sudden variability of ionosphere. On the other hand, the correction information was not received up to an hour in case of stable ionospheric condition. It is noteworthy that the outliers of FKP are clustered in their position with some biases. Since several meters of errors can be occurred for kinematic positioning with FKP, therefore, it is necessary to make appropriate preparation for real-time applications.

Hybrid ARQ scheme using RCPC codes in Wireless (무선 ATM 환경에서 RCPC 코드를 이용한 하이브리드 ARQ 기법)

  • Han, Eun-Jung;Cho, Young-Jong
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.39 no.7
    • /
    • pp.12-21
    • /
    • 2002
  • In this paper, we propose a new hybrid ARQ scheme to consider real-time and non real-time services in a wireless ATM network. Real-time and non-real-time services require different error control schemes according to each service characteristics. Therefore, in the next generation mobile communication environments where these service scenarios should be deployed, hybrid ARQ scheme using RCPC code with variable coding rate becomes one of the most suitable solutions. Because the variable coding rate is applied according to traits of transmitted frame and channel status, hybrid ARQ scheme using RCPC code can expect UEP effect. The UEP scheme does not apply equal error protection level to all information, but does high error protection level to more important information. In Our scheme, UEP of high error protection level is applied to real-time service, and UEP of low error protection and retransmission techniques are applied to non real-time service. We show that the proposed hybrid ARQ scheme improves channel utilization efficiency and yields high error correction behaviors.

Lightweight Algorithm for Digital Twin based on Diameter Measurement using Singular-Value-Decomposition (특이값 분해를 이용한 치수측정 기반 디지털 트윈 알고리즘 경량화)

  • Seungmin Lee;Daejin Park
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.18 no.3
    • /
    • pp.117-124
    • /
    • 2023
  • In the machine vision inspection equipment, diameter measurement is important process in inspection of cylindrical object. However, machine vision inspection equipment requires complex algorithm processing such as camera distortion correction and perspective distortion correction, and the increase in processing time and cost required for precise diameter measurement. In this paper, we proposed the algorithm for diameter measurement of cylindrical object using the laser displacement sensor. In order to fit circle for given four input outer points, grid search algorithms using root-mean-square error and mean-absolute error are applied and compared. To solve the limitations of the grid search algorithm, we finally apply the singular-value-decomposition based circle fitting algorithm. In order to compare the performance of the algorithms, we generated the pseudo data of the outer points of the cylindrical object and applied each algorithm. As a result of the experiment, the grid search using root-mean-square error confirmed stable measurement results, but it was confirmed that real-time processing was difficult as the execution time was 10.8059 second. The execution time of mean-absolute error algorithm was greatly improved as 0.3639 second, but there was no weight according to the distance, so the result of algorithm is abnormal. On the other hand, the singular-value-decomposition method was not affected by the grid and could not only obtain precise detection results, but also confirmed a very good execution time of 0.6 millisecond.

Depth Image Distortion Correction Method according to the Position and Angle of Depth Sensor and Its Hardware Implementation (거리 측정 센서의 위치와 각도에 따른 깊이 영상 왜곡 보정 방법 및 하드웨어 구현)

  • Jang, Kyounghoon;Cho, Hosang;Kim, Geun-Jun;Kang, Bongsoon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.5
    • /
    • pp.1103-1109
    • /
    • 2014
  • The motion recognition system has been broadly studied in digital image and video processing fields. Recently, method using th depth image is used very useful. However, recognition accuracy of depth image based method will be loss caused by size and shape of object distorted for angle of the depth sensor. Therefore, distortion correction of depth sensor is positively necessary for distinguished performance of the recognition system. In this paper, we propose a pre-processing algorithm to improve the motion recognition system. Depth data from depth sensor converted to real world, performed the corrected angle, and then inverse converted to projective world. The proposed system make progress using the OpenCV and the window program, and we test a system using the Kinect in real time. In addition, designed using Verilog-HDL and verified through the Zynq-7000 FPGA Board of Xilinx.

The Lens Aberration Correction Method for Laser Precision Machining in Machine Vision System (머신비전 시스템에서 레이저 정밀 가공을 위한 렌즈 수차 보정 방법)

  • Park, Yang-Jae
    • Journal of Digital Convergence
    • /
    • v.10 no.10
    • /
    • pp.301-306
    • /
    • 2012
  • We propose a method for accurate image acquisition in a machine vision system in the present study. The most important feature is required by the various lenses to implement real and of the same high quality image-forming optical role. The input of the machine vision system, however, is generated due to the aberration of the lens distortion. Transformation defines the relationship between the real-world coordinate system and the image coordinate system to solve these problems, a mapping function that matrix operations by calculating the distance between two coordinates to specify the exact location. Tolerance Focus Lens caused by the lens aberration correction processing to Galvanometer laser precision machining operations can be improved. Aberration of the aspheric lens has a two-dimensional shape of the curve, but the existing lens correction to linear time-consuming calibration methods by examining a large number of points the problem. How to apply the Bilinear interpolation is proposed in order to reduce the machining error that occurs due to the aberration of the lens processing equipment.

New Non-uniformity Correction Approach for Infrared Focal Plane Arrays Imaging

  • Qu, Hui-Ming;Gong, Jing-Tan;Huang, Yuan;Chen, Qian
    • Journal of the Optical Society of Korea
    • /
    • v.17 no.2
    • /
    • pp.213-218
    • /
    • 2013
  • Although infrared focal plane array (IRFPA) detectors have been commonly used, non-uniformity correction (NUC) remains an important problem in the infrared imaging realm. Non-uniformity severely degrades image quality and affects radiometric accuracy in infrared imaging applications. Residual non-uniformity (RNU) significantly affects the detection range of infrared surveillance and reconnaissance systems. More effort should be exerted to improve IRFPA uniformity. A novel NUC method that considers the surrounding temperature variation compensation is proposed based on the binary nonlinear non-uniformity theory model. The implementing procedure is described in detail. This approach simultaneously corrects response nonlinearity and compensates for the influence of surrounding temperature shift. Both qualitative evaluation and quantitative test comparison are performed among several correction technologies. The experimental result shows that the residual non-uniformity, which is corrected by the proposed method, is steady at approximately 0.02 percentage points within the target temperature range of 283 K to 373 K. Real-time imaging shows that the proposed method improves image quality better than traditional techniques.

The Fish-eye Lens Distortion Correction of Facilities Monitoring CCTV (시설물 감시용 CCTV의 초광각 렌즈 왜곡보정)

  • Kang, Jin-A;Nam, Sang-Kwan;Kim, Tae-Hoon;Oh, Yoon-Seok
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.27 no.3
    • /
    • pp.323-330
    • /
    • 2009
  • The demand that we are monitoring security and crime of the urban facilities is increasing recently, but the using CCTV devices are expensive. In this research, we enlarge the angle of view using the Fish-eye Lens and the Photogrammetry, the efficiency of monitoring enhance. First, we carry out the calibration of the Fish-eye Lens indoors, we calculate the correction parameters, and then covert the original image-point to new image-point correcting distortion. Second, the correction program with the correction parameters can obtain the real-time correcting image. Lastly, for authorization the developed program we compare correcting-image with scanning-imge, it is showed the RMSE is 3.2pixel.

Evaluation of Single-Frequency Precise Point Positioning Performance Based on SPARTN Corrections Provided by the SAPCORDA SAPA Service

  • Kim, Yeong-Guk;Kim, Hye-In;Lee, Hae-Chang;Kim, Miso;Park, Kwan-Dong
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.10 no.2
    • /
    • pp.75-82
    • /
    • 2021
  • Fields of high-precision positioning applications are growing fast across the mass market worldwide. Accordingly, the industry is focusing on developing methods of applying State-Space Representation (SSR) corrections on low-cost GNSS receivers. Among SSR correction types, this paper analyzes Safe Position Augmentation for Real Time Navigation (SPARTN) messages being offered by the SAfe and Precise CORrection DAta (SAPCORDA) company and validates positioning algorithms based on them. The first part of this paper introduces the SPARTN format in detail. Then, procedures on how to apply Basic-Precision Atmosphere Correction (BPAC) and High-Precision Atmosphere Correction (HPAC) messages are described. BPAC and HPAC messages are used for correcting satellite clock errors, satellite orbit errors, satellite signal biases and also ionospheric and tropospheric delays. Accuracies of positioning algorithms utilizing SPARTN messages were validated with two types of positioning strategies: Code-PPP using GPS pseudorange measurements and PPP-RTK including carrier phase measurements. In these performance checkups, only single-frequency measurements have been used and integer ambiguities were estimated as float numbers instead of fixed integers. The result shows that, with BPAC and HPAC corrections, the horizontal accuracy is 46% and 63% higher, respectively, compared to that obtained without application of SPARTN corrections. Also, the average horizontal and vertical RMSE values with HPAC are 17 cm and 27 cm, respectively.

A Real-time Correction of the Underestimation Noise for GK2A Daily NDVI (GK2A 일단위 NDVI의 과소추정 노이즈 실시간 보정)

  • Lee, Soo-Jin;Youn, Youjeong;Sohn, Eunha;Kim, Mija;Lee, Yangwon
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_1
    • /
    • pp.1301-1314
    • /
    • 2022
  • Normalized Difference Vegetation Index (NDVI) is utilized as an indicator to represent the vegetation condition on the land surface in various applications such as land cover, crop yield, agricultural drought, soil moisture, and forest disaster. However, satellite optical sensors for visible and infrared rays cannot see through the clouds, so the NDVI of the cloud pixel is not a valid value for the land surface. This study proposed a real-time correction of the underestimation noise for GEO-KOMPSAT-2A (GK2A) daily NDVI and made sure its feasibility through the quantitative comparisons with Moderate Resolution Imaging Spectroradiometer (MODIS) NDVI and the qualitative interpretation of time-series changes. The underestimation noise was effectively corrected by the procedures such as the time-series correction considering vegetation phenology, the outlier removal using long-term climatology, and the gap filling using rigorous statistical methods. The correlation with MODIS NDVI was higher, and the difference was lower, showing a 32.7% improvement compared to the original NDVI product. The proposed method has an extensibility for use in other satellite products with some modification.

A Low-Complexity Real-Time Barrel Distortion Correction Processor Combined with Color Demosaicking (컬러 디모자이킹이 결합된 저 복잡도의 실시간 배럴 왜곡 보정 프로세서)

  • Jeong, Hui-Seong;Park, Yun-Ju;Kim, Tae-Hwan
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.9
    • /
    • pp.57-66
    • /
    • 2014
  • This paper presents a low-complexity barrel distortion correction processor for wide-angle cameras. The proposed processor performs the barrel distortion correction jointly with the color demosaicking, so that the hardware complexity can be reduced significantly. In addition, to reduce the required memory bandwidth, an efficient memory interface is proposed by utilizing the spatial locality of the memory access in the correction process. The proposed processor is implemented with 35K logic gates in a $0.11-{\mu}m$ CMOS process and its correction speed is 150 Mpixels/s at the operating frequency of 606MHz, where the supported frame size is $2048{\times}2048$ and the required memory bandwidth is 1 read/cycle.