• Title/Summary/Keyword: Real-Time AE Evaluation

Search Result 60, Processing Time 0.032 seconds

Interfacial and Nondestructive Evaluation of Single Carbon Fiber/Epoxy Composites by Fiber Fracture Source Location using Acoustic Emission (Acoustic Emission 의 섬유파단 Source Location을 이용한 Carbon Fiber/Epoxy Composites의 계면특성 및 비파괴적 평가)

  • Kong, Jin-Woo;Kim, Jin-Won;Park, Joung-Man;Yoon, Dong-Jin
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.10a
    • /
    • pp.116-120
    • /
    • 2001
  • Fiber fracture is one of the dominant failure phenomena to determine total mechanical properties in composites. Fiber fracture locations were measured by optical microscopic method and acoustic emission (AE) as functions of matrix toughness and surface treatment by the electrodeposition (ED), and then two methods were compared. Two AE sensors were attached on the epoxy specimen and fiber fracture signals were detected with elapsed time. The interfacial shear stress (IFSS) was measured using tensile fragmentation test and AE system. In ED-treated case, the number of the fiber fracture measured by an optical method and AE was more than that of the untreated case. The signal number measured by AE were rather smaller than the number of fragments measured by optical method, since some fiber fracture signals were lost while AE detection. However, one-to-one correspondence between the x-position location by AE and real break positions by optical method was generally established well. The fiber break source location using AE can be a valuable method to measure IFSS for semi- or nontransparent matrix composites nondestructively (NDT).

  • PDF

Optimization of Bar-to-Bar Dissimilar Friction Welding of Hydraulic Valve Spool Steel and the Weld Strength Properties and Its AE Evaluation (유공압 밸브 스풀용 강재의 봉대봉 이종재 마찰 용접 최적화와 용접강도 특성 및 AE 평가)

  • 오세규;유인종;박형동;이연탁
    • Journal of Ocean Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.24-33
    • /
    • 1996
  • Up to now, most of studies on mechanical properties in friction welded components are about tensile and bending strength. However the fatigue studies on the friction-welded components subjected to repeated stress are not available. The purposes of this study are the development of fundamental design and the development of in-process real-time weld quality evaluation technique by acoustic emission for the bar-to-bar dissimilar friction welding of hydraulic valve spool steels.

  • PDF

Optimal Welding Condition of Dissimilar Friction Welded Materials and Its Real Time Evaluation by Acoustic Emission (이종마찰용접재의 최적용접조건과 음향방출에 의한 실시간 품질평가)

  • Kong, Yu-Sik;Lee, Jin-Kyung
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.22 no.2
    • /
    • pp.191-199
    • /
    • 2019
  • In this paper, dissimilar friction welding were produced using 15 mm diameter solid bar in chrome molybedenum steel(SCM440) to stainless steel(STS316L) to investigate their mechanical properties. Consequently, optimal welding conditions were n=2000 rpm, HP=70 MPa, UP=140 MPa, HT=10 sec and UT=10 sec when the metal loss(Mo) is 8.6 mm. In addition, an acoustic emission technique was applied to evaluate the optimal friction welding condition. AE parameters including the cumulative count, amplitude and energy showed a various changes according to the friction condition. A continuous type waveforms and low frequency spectrum was presented in friction time. On the other hand, a burst type waveform and high frequency spectrum was exhibited in pressing time.

Detection and Evaluation of Microdamages in Composite Materials Using a Thermo-Acoustic Emission Technique (열-음향방출기법을 이용한 복합재료의 미세손상 검출 및 평가)

  • 최낙삼;김영복;이덕보
    • Composites Research
    • /
    • v.16 no.1
    • /
    • pp.26-33
    • /
    • 2003
  • Utilizing a thermo-acoustic emission (AE) technique, a study on detection and evaluation of microfractures in cross-ply laminate composites was performed. Fiber breakages and matrix fractures formed by a cryogenic cooling at $-191^{\circ}C$ were observed with ultrasonic C-scan, optical and scanning electron microscopy. Those microfractures were monitored in a non-destructive in-situ state as three different types of thermo-AE signals classified on the basis of Fast-Fourier Transform and Short-Time Fourier Transform. Thus, it was concluded that real-time estimation of microfracture processes being formed during cryogenic cooling could be accomplished by monitoring such different types of thermo-AEs in each time-stage and then by analyzing thermo-AE behaviors for the respective AE types on the basis of the AE signal analysis results obtained during thermal heating and cooling load cycles.

A Study on Determination of $J_{IC}$ by Time-Frequency Analysis Method (시간-주파수 해석법에 의한 $J_{IC}$결정에 관한 연구)

  • Nam, Gi-U;An, Seok-Hwan;Kim, Bong-Gyu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.5
    • /
    • pp.765-771
    • /
    • 2001
  • Elastic-plastic fracture toughness JIC can be used a s an effective design criterion in elastic-plastic fracture mechanics. Among the JIC test methods approved by ASTM, unloading compliance method was used in this study. In order to examine the relationship between fracture behavior of JIC test and AE signals, the post processing of AE signals has been carried out by Short Time Fourier Transform(STFT), one of the time-frequency analysis methods. The objective of this study is to evaluate the application of characterization of AE signals for unloading compliance method of JIC test. As a result of time-frequency analysis, we could extract the AE from the raw signal and analyze the frequencies in AE signal at the same time. AE signal generated by elastic-plastic fracture of material has some different aspects at elastic and plastic ranges, or the first portion of crack growth by fracture. First of all, increased energy recorded and detected by using AE count method increase rapidly from the start of ductile fracture. The variation of main frequency range with time-frequency analysis method could be confirmed. We could know fracture behavior of interior material by examination AE characteristics generated in real-time when elastic-plastic fracture occurred in material under loading.

Study on Optimization of Dissimilar Friction Welding of Nuclear Power Plant Materials and Its Real Time AE Evaluation (원자력 발전소용 이종재 마찰용접의 최적화와 AE에 의한 실시간 평가에 관한 연구)

  • 권상우;오세규;유인종;황성필;공유식
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2000.10a
    • /
    • pp.42-46
    • /
    • 2000
  • In this paper, joints of Cu-1Cr-0.1Zr alloy to STS316L were performed by friction welding method. Cu-1Cr-0.1Zr alloy is attractive candidate as nuclear power plant material and exibit the best combination of high sts good electrical and thermal conductivity of any copper alloy examined. The stainless steel is a structural material who alloy acts as a heat sink material for the surface heat flux in the first wall. So, in this paper, not only the develop optimizing of friction welding with more reliability and more applicabililty but also the development of in-process rear quility(such as strength and toughness) evaluation technique by acoustic emission for friction welding of such nuclear component of Cu-1Cr-0.1Zr alloy to STS316L steel were performed.

  • PDF

Non-destructive evaluation of steel and GFRP reinforced beams using AE and DIC techniques

  • Sharma, Gaurav;Sharma, Shruti;Sharma, Sandeep K.
    • Structural Engineering and Mechanics
    • /
    • v.77 no.5
    • /
    • pp.637-650
    • /
    • 2021
  • The paper presents an investigation of the widely varying mechanical performance and behaviour of steel and Glass Fibre Reinforced Polymer (GFRP) reinforced concrete beams using non-destructive techniques of Acoustic Emission (AE) and Digital Image Correlation (DIC) under four-point bending. Laboratory experiments are performed on both differently reinforced concrete beams with 0.33%, 0.52% and 1.11% of tension reinforcement against balanced section. The results show that the ultimate load-carrying capacity increases with an increase in tensile reinforcement in both cases. In addition to that, AE waveform parameters of amplitude and number of AE hits successfully correlates and picks up the divergent mechanism of cracking initiation and progression of failure in steel reinforced and GFRP reinforced concrete beams. AE activity is about 20-30% more in GFRP-RC beams as compared to steel-RC beams. It was primarily due to the lower modulus of elasticity of GFRP bars leading to much larger ductility and deflections as compared to steel-RC beams. Furthermore, AE XY event plots and longitudinal strain profiles using DIC gives an online and real-time visual display of progressive AE activity and strains respectively to efficaciously depict the crack evolution and their advancement in steel-RC and GFRP-RC beams which show a close matching with the micro-and macro-cracks visually observed in the actual beams at various stages of loading.

Friction Welding of Dissimilar Press Punch Materials and Its Evaluation by AE (신소재 금형펀치의 이종재 마찰용접 개발과 AE품질평가를 위한 연구)

  • 오세규;박일동;이원석
    • Journal of Welding and Joining
    • /
    • v.15 no.2
    • /
    • pp.43-53
    • /
    • 1997
  • The complete joining method for dissimilar press punch materials and its real-time evaluation method is not available at present. Brazing method has been used for joining them, but it is known that the welded joint by the brazing has the lower bonding efficiency and reliability than the diffusion welding. The friction welding with a diffusion mechanism in bonding was applied in this study. This work was carried out to determine the proper friction welding conditions and to analyze mechanical properties of friction welded joints of sintered carbide tool materials (SKNM50 for the blade part of press punch) to alloy steel (SCM440 for the shank part of press punch) using aluminum (A6061 for the interlayer material) as an insert material between the sintered carbide tool materials and the alloy steel. In addition, acoustic emission test was carried out during friction welding to evaluate the weld quality.

  • PDF

The Damage Evaluation for the Application of Acoustic Emission in a Drilling Procedure of the CFRP Composite Materials (CFRP의 드릴작업시 AE적용에 의한 손상평가)

  • 최병국;윤유성
    • Journal of the Korean Society of Safety
    • /
    • v.16 no.4
    • /
    • pp.47-51
    • /
    • 2001
  • The carbon fiber reinforced plastics(CFRP) have been widely used in aircraft and spacecraft structures as well as sports goods because it has high specific strength, high specific stiffness and low coefficient of thermal expansion. Machining of CFRP poses problems not frequently seen for metals due to the nonhomogeneity, anisotropy, and abrasive characteristics of CFRP. Delamination is a common problem faced while drilling holes in CFRP using conventional drilling. Therefore, AE characteristics related to drilling damage process of unidirectional and [0/90/]s crossply laminate composite was studied. Also drilling damage like the delamination was observed by video camera in real time monitoring technique. From the results, we basically found the relationships between the delamination from drilling and AE characteristics for CFRP composites.

  • PDF