• Title/Summary/Keyword: Real-Fluid Model

Search Result 229, Processing Time 0.033 seconds

Analysis for Local Structure of Gaseous Hydrogen/liquid Oxygen Flame at Supercritical Pressures (초임계 압력상태에서 기체수소/액체산소 국소화염구조 해석)

  • Kim, Tae-Hoon;Kim, Seong-Ku;Kim, Yong-Mo
    • Journal of ILASS-Korea
    • /
    • v.15 no.4
    • /
    • pp.182-188
    • /
    • 2010
  • Significant real fluid behaviors including rapid property changes take place where high pressure combustion devices such as rocket engines. The flamelet model is the reliable approach to account for the real fluid effects. In the present study, the flamelet equations are extended to treat the general fluids over transcritical and supercritical states. The real fluid flamelet model is carried out for the gaseous hydrogen and cryogenic liquid oxygen flames at the wide range of thermodynamic conditions. Based on numerical results, the precise discussions are made for effects of real fluid, pressure, and differential diffusion on the local flame structure.

Analysis of Gaseous Hydrogen/liquid Oxygen Combustion Processes at Supercritical State (초임계 압력에서 기체수소/액체산소의 연소과정 해석)

  • Kim, Tae-Hoon;Kim, Seong-Ku;Kim, Yong-Mo
    • Journal of ILASS-Korea
    • /
    • v.15 no.4
    • /
    • pp.189-194
    • /
    • 2010
  • This study has been mainly motivated to numerically model the transcritical mixing and reacting flow processes encountered in the liquid propellant rocket engines. In the present approach, turbulence is represented by the extended k-$\varepsilon$ turbulence model. To account for the real fluid effects, the propellant mixture properties are calculated by using SRK (Souve-Redlich-Kwong) equation of state model. In order to realistically represent the turbulence-chemistry interaction in the turbulent non-premixed flames, the flamelet approach based on the real fluid flamelet library has been adopted. Based on numerical results, the detailed discussions are made for the real fluid effects and the precise structure of the transcritical cryogenic liquid nitrogen jet and gaseous hydrogen/liquid oxygen coaxial jet flame.

Numerical Analysis of Cryogenic Liquid Nitrogen Jets at Supercritical Pressures using Multi-Environment Probability Density Function approach (다점 확률분포 모델을 이용한 초임계 압력 액체질소 제트 해석)

  • Jung, Kiyoung;Kim, Namsu;Kim, Yongmo
    • Journal of ILASS-Korea
    • /
    • v.22 no.3
    • /
    • pp.137-145
    • /
    • 2017
  • This paper describes numerical modeling of transcritical and supercritical fluid flows within a liquid propellant rocket engine. In the present paper, turbulence is modeled by standard $k-{\varepsilon}$ model. A conserved scalar approach in conjunction with multi-environment probability density function model is used to account for the turbulent mixing of real-fluids in the transcritical and supercritical region. The two real-fluid equations of state and dense-fluid correction schemes for mixtures are used to construct thermodynamic data library based on the conserved scalar. In this study, calculations are made on two cryogenic nitrogen jets under different chamber pressures. Sensitivity analysis for two different real-fluid equations of sate is particularly emphasized. Based on numerical results, precise structures of cryogenic nitrogen jets are discussed in detail. Numerical results show that the current real-fluid model can predict the essential features of the cryogenic liquid nitrogen jets.

Interactive Simulation between Rigid body and Fluid using Simplified Fluid-Surface Model (간략화된 유체 표면모델을 이용한 강체와 유체의 상호작용 시뮬레이션)

  • Kim, Eun-Ju
    • Journal of Korea Multimedia Society
    • /
    • v.12 no.2
    • /
    • pp.323-328
    • /
    • 2009
  • Natural Phenomena are simulated to make computer users feel verisimilitude and be immersed in games or virtual reality. The important factor in simulating fluid such as water or sea using 3D rendering technology in games or virtual reality is real-time interaction and reality. There are many difficulties in simulating fluid models because it is controlled by many equations of each specific situation and many parameter values. In addition, it needs a lot of time in processing physically-based simulation. In this paper, I suggest simplified fluid-surface model in order to represent interaction between rigid body and fluid, and it can make faster simulation by improved processing. Also, I show movement of fluid surface which is come from collision of rigid body caused by reaction of fluid in representing interaction between rigid body and fluid surface. This natural fluid-surface model suggested in this paper is represented realistically in real-time using fluid dynamics veri similarly. And the fluid-surface model will be applicable in games or animation by realizing it for PC environment to interact with this.

  • PDF

Modeling for gaseous methane/liquid oxygen combustion processes at supercritical pressure (초임계 압력상태의 기체메탄/액체산소 연소과정 해석)

  • Kim, Tae-Hoon;Kim, Yong-Mo;Kim, Seong-Ku
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.85-88
    • /
    • 2010
  • This study has been mainly motivated to numerically model the supercritical mixing and combustion processes encountered in the liquid propellant rocket engines. In the present approach, turbulence is represented by the extended $k-{\varepsilon}$ turbulence model. To account for the real fluid effects, the propellant mixture properties are calculated by using SRK (Souve-Redlich-Kwong) equation of state. In order to realistically represent the turbulence-chemistry interaction in the turbulent nonpremixed flames, the flamelet approach based on the real fluid flamelet library has been adopted. Based on numerical results, the detailed discussions are made for the real fluid effects and the precise structure of gaseous methane/liquid oxygen coaxial jet flame.

  • PDF

Effects of Swirl number and Recess length on Flame Structure of Supercritical Kerosene/LOx Double Swirl Coaxial Injector (선회수와 리세스 길이가 초임계상태 케로신/액체산소 이중 와류 동축형 분사기의 화염구조에 미치는 영향 해석)

  • Park, Sangwoon;Kim, Taehoon;Kim, Yongmo
    • 한국연소학회:학술대회논문집
    • /
    • 2012.11a
    • /
    • pp.33-35
    • /
    • 2012
  • This study has been mainly motivated to numerically model the supercritical mixing and combustion processes encountered in the liquid propellant rocket engines. In the present approach, turbulence is represented by the extended k-e model. To account for the real fluid effects, the propellant mixture properties are calculated by using generalized cubic equation of state. In order to realistically represent the turbulence-chemistry interaction in the turbulent nonpremixed flames, the flamelet approach based on the real fluid flamelet library has been adopted. Based on numerical results, the detailed discussions are made for the effects of swirl number on flame structure of supercritical kerosene/LOx double swirl coaxial injector.

  • PDF

Effects of Swirl number and Pressure on Flame Structure of Supercritical Kerosene Propellant Subscale Injector (선회수와 압력이 초임계상태 케로신 추진제 축소형 다중분사기의 화염구조에 미치는 영향 해석)

  • Park, Sangwoon;Kim, Taehoon;Kim, Yongmo
    • 한국연소학회:학술대회논문집
    • /
    • 2013.06a
    • /
    • pp.81-82
    • /
    • 2013
  • This study has been mainly motivated to numerically model the supercritical mixing and combustion processes encountered in the liquid propellant rocket engines. In the present approach, turbulence is represented by the standard k-e model. To account for the real fluid effects, the propellant mixture properties are calculated by using generalized cubic equation of state. In order to realistically represent the turbulence-chemistry interaction in the turbulent nonpremixed flames, the flamelet approach based on the real fluid flamelet library has been adopted. Based on numerical results, the detailed discussions are made for the effects of swirl on flame structure of supercritical kerosene liquid propellant combustion.

  • PDF

An Evaluation of Numerical Schemes in a RANS-based Simulation for Gaseous Hydrogen/Liquid Oxygen Flames at Supercritical Pressure (초임계 압력하의 기체수소-액체산소 화염에 대한 난류모델을 이용한 해석에서 수치기법 평가)

  • Kim, Won Hyun;Park, Tae Seon
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.17 no.3
    • /
    • pp.21-29
    • /
    • 2013
  • Turbulent flow and thermal fields of gaseous hydrogen/liquid oxygen flames at supercritical pressure are investigated by turbulence models. The modified Soave-Redlich-Kwong (SRK) EOS is implemented into the flamelet model to realize real-fluid combustions. For supercritical fluid flows, the modified pressure-velocity-density coupling are introduced. Based on the algorithm, the relative performance of six convection schemes and the predictions of four turbulence models are compared. The selected turbulence models are needed to be modified to consider various characteristics of real-fluid combustions.

Development of executive system in power plant simulator (발전 플랜트 설계용 시뮬레이터에서 Executive system의 개발)

  • 예재만;이동수;권상혁;노태정
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.488-491
    • /
    • 1997
  • The PMGS(Plant Model Generating System) was developed based on modular modeling method and fluid network calculation concept. Fluid network calculation is used as a method of real-time computation of fluid network, and the module which has a topology with node and branch is defined to take advantages of modular modeling. Also, the database which have a shared memory as an instance is designed to manage simulation data in real-time. The applicability of the PMGS was examined implementing the HRSG(Heat Recovery Steam Generator) control logic on DCS.

  • PDF

An Improved Dynamics Model for Stone Skipping Simulation (물수제비 시뮬레이션을 위한 개선된 동역학 모델)

  • Lee, Nam-Kyung;Baek, Nak-Hoon
    • Journal of Korea Multimedia Society
    • /
    • v.13 no.9
    • /
    • pp.1382-1390
    • /
    • 2010
  • We can see interactions between rigid body and fluid every day, anywhere. This kind of rigid body-fluid simulation is one of the most difficult problems in physically-based modeling, mainly due to heavy computations. In this paper, we present a real-time dynamics model for simulating stone skipping, which is a popular rigid body-fluid interaction in the real world. In comparison to the previous works, our improved dynamics model supports the rotation of the stones and also computes frictional forces with respect to the air. We can simulate a realistic result for various user input by using proposed model. Additionally, we present a water surface model to show more realistic ripples interactively. Our methods can be easily adapted to other interactive dynamics systems including 3D game engines.