• Title/Summary/Keyword: Real time simulator

Search Result 768, Processing Time 0.051 seconds

Development of a Real-time Vehicle Driving Simulator

  • Kim, Hyun-Ju;Park, Min-Kyu;Lee, Min-Cheoul;You, Wan-Suk
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.51.2-51
    • /
    • 2001
  • A vehicle driving simulator is a virtual reality device which makes a human being feel as if the one drives a vehicle actually. The driving simulator is effectively used for studying interaction of a driver-vehicle and developing the vehicle system of new concepts. The driving simulator consists of a motion platform, a motion controller, a visual and audio system, a vehicle dynamic analysis system, a vehicle operation system and etc. The vehicle dynamic analysis system supervises overall operation of the simulator and also simulates dynamic motion of a multi-body vehicle model in real-time. In this paper, the main procedures to develop the driving simulator are classified by 4 parts. First, a vehicle motion platform and a motion controller, which generates realistic motion using a six degree of freedom Stewart platform driven hydraulically. Secondly, a visual system generates high fidelity visual scenes which are displayed on a screen ...

  • PDF

The Performance Test of Digital PSS Using KEPCO Enhanced Pourer System Simulator(KEPS) (실시간 대규모 전력계통 해석용 시뮬레이터(KEPS)를 이용한 국산 디지털 PSS의 성능 시험)

  • 신정훈;김태균;추진부;백영식
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.51 no.12
    • /
    • pp.611-623
    • /
    • 2002
  • This paper introduce the real time digital simulator which is located in Korea Electric Power Research Institute. This paper also describes the methodology for the performance test of the PSS using KEPS. This test is to get a high degree of the confidence of the developed PSS before it is installed into the real power system. This has been performed in the form of closed-loop tests in which Simulator and PSS are connected and signals come and back interactively. Many tests have successfully done using KEPS which consists of 26 RTDS racks, under the large-scale power system. The simulated reduced KEPCO power system contains 88 generators and 295 buses. Through the AVR step, three phase fault and active power variation test, the effectiveness of developed PSS has been proved. This paper also presents the overview of KEPS and hardware of protype PSS.

Dynamic Model of PEM Fuel Cell Using Real-time Simulation Techniques

  • Jung, Jee-Hoon;Ahmed, Shehab
    • Journal of Power Electronics
    • /
    • v.10 no.6
    • /
    • pp.739-748
    • /
    • 2010
  • The increased integration of fuel cells with power electronics, critical loads, and control systems has prompted recent interest in accurate electrical terminal models of the polymer electrolyte membrane (PEM) fuel cell. Advancement in computing technologies, particularly parallel computation techniques and various real-time simulation tools have allowed the prototyping of novel apparatus to be investigated in a virtual system under a wide range of realistic conditions repeatedly, safely, and economically. This paper builds upon both advancements and provides a means of optimized model construction boosting computation speeds for a fuel cell model on a real-time simulator which can be used in a power hardware-in-the-loop (PHIL) application. Significant improvement in computation time has been achieved. The effectiveness of the proposed model developed on Opal RT's RT-Lab Matlab/Simulink based real-time engineering simulator is verified using experimental results from a Ballard Nexa fuel cell system.

Real-Time Hardware Simulator for Grid-Tied PMSG Wind Power System

  • Choy, Young-Do;Han, Byung-Moon;Lee, Jun-Young;Jang, Gil-Soo
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.3
    • /
    • pp.375-383
    • /
    • 2011
  • This paper describes a real-time hardware simulator for a grid-tied Permanent Magnet Synchronous Generator (PMSG) wind power system, which consists of an anemometer, a data logger, a motor-generator set with vector drive, and a back-to-back power converter with a digital signal processor (DSP) controller. The anemometer measures real wind speed, and the data is sent to the data logger to calculate the turbine torque. The calculated torque is sent to the vector drive for the induction motor after it is scaled down to the rated simulator power. The motor generates the mechanical power for the PMSG, and the generated electrical power is connected to the grid through a back-to-back converter. The generator-side converter in a back-to-back converter operates in current control mode to track the maximum power point at the given wind speed. The grid-side converter operates to control the direct current link voltage and to correct the power factor. The developed simulator can be used to analyze various mechanical and electrical characteristics of a grid-tied PMSG wind power system. It can also be utilized to educate students or engineers on the operation of grid-tied PMSG wind power system.

A Study on the Development of the Personal Computer Aided ARPA RADAR Simulator (PC를 이용한 ARPA RADAR SIMULATOR의 개발에 관한 연구)

  • 송채욱;김환수
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.1 no.1
    • /
    • pp.63-82
    • /
    • 1995
  • In recent years, through the rapid development in personal computer technology, it has become possible to make a radar simulator based on the personal computer. The advantage of the personal Computer aidd radar simulator lies in its cost effectiveness, when comparing with that using the real radar. Although there have been studies carried out to develop radar simulator using PC and the products of thi kind is in the commercial market already, they are all using the mockup of the real radar, and therefore, the price of the simulator is still rather expensive. In this respect, this thesis aims to develop a ARPA radar simulator which is running on the sole PC, so that the students of the maritime educational institution may get ARPA radar training easily and cheaply. The simulator developed in this thesis using Visual Basic is found to run successfully on the 486PC, and it is expected that this new simulator system designed first time in Korea would be used as an easily accessible ARPA radar training equipment.

  • PDF

A Study of Function Verification of Digital Excitation System with Real Time Simulator (시뮬레이터 탑재형 디지털 여자시스템 기능검증 시험에 관한 연구)

  • Ryu, Ho-Seon;Shin, Man-Su;Lee, Joo-Hyun;Lim, Ick-Hun
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1191-1192
    • /
    • 2011
  • We released new triple redundant digital excitation system with real time generator-turbine simulator. One of its great merits is the real time generator-turbine simulator when it was compared with the other products. If excitation system is tripped by unexpected faults, Maintenance man can do easily performance test of digital excitation control board, sequence relay and thyristor switching device of phase controlled rectifier without manufacturer's support. For the verification of this system, It was tested with an actual excitation system implemented on 5kVA M-G Set. After finishing the tests, the trial product will be installed and operated at a 500MW thermal power plant.

  • PDF

A Field Test of Diesel Generator Excitation Control System Using Real Time Simulator (실시간 시뮬레이터를 이용한 디젤발전기 여자시스템 현장시험)

  • Lee, Joo-Hyun;Rhew, Ho-Sun;Jeong, Tae-Won
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.7
    • /
    • pp.1314-1319
    • /
    • 2010
  • The excitation control system of an emergency diesel generator is classified as a kind of safety-related system. Compared with other control systems in a power plant, this system is required to be more reliable and have better performance. KEPCO Research Institute successfully developed the excitation control system for a diesel generator. This paper presents its field test results by using a real time simulator on a nuclear power plant.

A Study on Development of Real-time off-line Generator Simulator (발전기 실시간 off-line 시뮬레이터 개발에 관한 연구)

  • Ahn, Jong-Bo;Kim, Seog-Joo;Kim, Jung-Mun;Moon, Seung-Ill
    • Proceedings of the KIEE Conference
    • /
    • 1996.07b
    • /
    • pp.774-777
    • /
    • 1996
  • This paper presents a new development of real-time generator simulator which is operating on PC environment. User friendly made interfaces make it possible for any users to utilize the simulator immediately with very little learning efforts. Also, the real-time simulation gives much more practical operation feeling to the users. It provides a very useful tool for analyzing system dynamics and developing the power system control schemes.

  • PDF

Study on Real-Time Load Simulator for Testing Propulsion Inverter Test (추진인버터 시험을 위한 실시간 부하 시뮬레이터에 관한 연구)

  • 김길동;신정렬;이우동;한석윤;박기준
    • Journal of the Korean Society for Railway
    • /
    • v.7 no.1
    • /
    • pp.1-8
    • /
    • 2004
  • A newly-built inverter has to undergo a series of stress tests in the final stage of production line. This can be achieved by connecting it to a dynamometer consisting of a three-phase machine joined by a rigid shaft to a DC load machine. The latter is controlled to create some specific load characteristic needed for the test. In this paper a test method is proposed, in which no mechanical equipment is needed. The suggested test stand consists only of a inverter to be tested and a simulator converter. Both devices are connected back-to-back on the AC-side via smoothing reactors. The simulator operates in real-time as an equivalent load circuit, so that the device under test will only notice the behaviour of a three-phase machine under consideration of the load. In oder to prove rightness of the suggested test method, the simulation and actural experiment carried out emulation for a 2.2kW induction motor.

Development of Wireless Communication based Train Separation Control Simulator (무선통신기반 열차간격제어 시뮬레이터 개발)

  • Oh, Seh-Chan;Yoon, Yong-Ki;Baek, Jong-Hyen
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.117-124
    • /
    • 2011
  • The train control is a facility to ensure safe train operation, and its safety is the most important factor to determine whether introduced in railway authorities. Therefore, in order to improve practical usability in the business, safety analysis and evaluation of train control system and train control related core technologies are needed. In this paper, we develop wireless communication based train separation control simulator, the simulator traces trains in real-time, and produces train movement authorities with their position and speed information, and then calculates static and dynamic speed profiles. Trains in the simulator are controlled in real-time by these profiles. In the paper, simulator configuration, train control algorithm and simulation results under simulated environment are presented.

  • PDF