• 제목/요약/키워드: Real time discharge

검색결과 234건 처리시간 0.03초

Photosensor를 이용한 재활 치료형을 위한 $CO_2$ laser 의 출력변동율 안정을 위한 실시간 제어특성 연구 (Real time control special quality research for $CO_2$ laser's output change rate stability for accumulation style surgical operation rehabilitation of ventriculus that use Photosensor)

  • 김휘영
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2006년도 하계종합학술대회
    • /
    • pp.1015-1016
    • /
    • 2006
  • The important parameters deciding the fluctuation of Accumulation style surgical operation of ventriculus laser beam are smoothing capacitor, frequency and he characteristics of laser resonator. In this thesis, we control the fluctuation of medical $CO_2C$ laser in realtime by changing Duty-Ratio of IGBT and switching frequency with fixed the smoothing capacitor to improve the fluctuation of laser beam. We detect the light on laser resonator using a CdS photo sensor to improve ripple factor of laser beam and feedback fluctuated signals refined by a band pass filter into the control circuit to stabilize fluctuation actively. There is much to be desired in the realtime controlling technique of the light on Accumulation style surgical operation of ventriculus laser discharge tube in electrical signal. We propose switching control technique with microprocessor and photo sensing technique by controlling switch devices optimum operation and feedback signals detected by a photo sensor into the laser power supply in order to improve ripple factor of the $CO_2$ laser beam.

  • PDF

RTOS(Real Time Operation System) 환경하의 Nd:YAG 레이저 Firmware 설계 (Nd:YAG laser firmware Design under RTOS operation)

  • 김병균;김휘영;박구렬;문동성;홍정환;김희제;조정수
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2000년도 하계학술대회 논문집 C
    • /
    • pp.2107-2109
    • /
    • 2000
  • A pulsed Nd:YAG laser is used widely for materials processing and medical instrument. It's very important to control the laser energy density in those fields using a pulsed Nd:YAG laser. A pulse repetition rate and a pulse width are regarded as the most dominant factors to control the energy density of laser beam. In this paper, the alternating charge and discharge system was designed to adjust a pulse repetition rate This system is controlled by microprocessor and allows to replace an expensive condenser for high frequency to cheap one for low frequency. In addition, The microcontroller monitors the flow of cooling water, short circuit. and miss firing and so on. We designed Nd:YAG laser firmware with smart microcontroller, and want to explain general matters about the firmware from now.

  • PDF

V2G 전기자동차의 부하관리 자원 활용을 위한 적정 지원금 산정에 관한 연구 (A Study on the Decision of Appropriate Subsidy Levels Regarding Electric Vehicles for V2G as Load Management Resources)

  • 김정훈;황성욱
    • 전기학회논문지
    • /
    • 제65권2호
    • /
    • pp.264-268
    • /
    • 2016
  • Recently, various energy efficiency optimization activities are ongoing globally by integrating conventional grids with ICT (Information and Communication Technology). In this sense, various smart grid projects, which power suppliers and consumers exchange useful informations bilaterally in real time, have been being carried out. The electric vehicle diffusion program is one of the projects and it has been spotlighted because it could resolve green gas problem, fuel economy and tightening environmental regulations. In this paper, the economics of V2G system which consists of electric vehicles and the charging infrastructure is evaluated comparing electric vehicles for V2G with common electric vehicles. Additional benefits of V2G are analyzed in the viewpoint of load leveling, frequency regulation and operation reserve. To find this benefit, electricity sales is modeled mathematically considering depth of discharge, maximum capacity reduction, etc. Benefit and cost analysis methods with the modeling are proposed to decide whether the introduction of V2G systems. Additionally, the methods will contribute to derive the future production and the unit cost of electric vehicle and battery and to get the technical and economic analysis.

에어챔버가 설치된 송수관로에서의 수격현상 (Waterhammer in the Transmission Pipeline with an Air Chamber)

  • 김경엽
    • 대한기계학회논문집B
    • /
    • 제26권2호
    • /
    • pp.177-183
    • /
    • 2002
  • The field tests on the waterhammer were carried out in the pump pipeline system with an air chamber. The effects of the input variables and the design parameters for the air chamber were investigated by both the numerical calculations and the experiments. Because the waterhammer problems as a result of the pump power failure were the most important, these situations were carefully studied. Among the input variables used in the waterhammer analysis, the polytropic exponent, the discharge coefficient and the wavespeed had influence on the simulated results in that order, and were calibrated in comparison with the experimental results. As the initial air volume in a vessel increased, the period of waterhammer increased and the pressure variation decreased, resulting from the reduction of the rate of pressure change in the air chamber. Using smaller orifice in the bypass pipe, the pressure rise was suppressed in some degree and the pressure surge was dissipated more rapidly as time passed. The simulations were in fairly good agreement with the measured values until 1∼2 periods of waterhammer. Not only the maximum and minimum pressures in the pipe1ine but also those occurring times were reasonably predicted. The computer program developed in this study will be useful in designing the optimum parameters of an air chamber for the real pump pipeline system.

임피던스 변화를 이용한 선형 대기압 DBD 플라즈마 밀도 측정 (Plasma Density Measurement of Linear Atmospheric Pressure DBD Source Using Impedance Variation Method)

  • 신기원;이환희;권희태;김우재;서영철;권기청
    • 반도체디스플레이기술학회지
    • /
    • 제17권2호
    • /
    • pp.16-19
    • /
    • 2018
  • The development speed of semiconductor and display device manufacturing technology is growing faster than the development speed of process equipment. So, there is a growing need for process diagnostic technology that can measure process conditions in real time and directly. In this study, a plasma diagnosis was carried out using impedance variation due to the plasma discharge. Variation of the measurement impedance appears as a voltage change at the reference impedance, and the plasma density is calculated using this. The above experiment was conducted by integrating the plasma diagnosis system and the linear atmospheric pressure DBD plasma source. It was confirmed that plasma density varies depending on various parameters (gas flow rate, $Ar/O_2$ mixture ratio, Input power).

BIM과 RFID 기술을 활용한 건설 폐기물 관리 방안 (Building waste management plan using BIM and RFID technology)

  • 단신;안이슬;함남혁;김재준
    • 한국BIM학회 논문집
    • /
    • 제12권2호
    • /
    • pp.26-39
    • /
    • 2022
  • The purpose of this study is to establish a novel system for on-site management of construction and demolition waste. Construction waste has always been one of largest waste in the world and has long lacked an effective management system. Although various countries have planned the disposal of waste at the political level, the real-time and effective management of construction sites has not been mentioned. Especially in China, the continuous development of the construction industry also generates a large amount of waste, and China is not prepared for a large amount of construction waste. In order to alleviate the huge impact of construction waste on society and the environment, this study proposes a waste management method that combines Building Information Modeling technology and Radio Frequency Identification technology. Through this research, by using information technology to manage the generation and discharge of construction waste, and record the amount and information of waste generation, also improve the management method of construction waste.

A Fuel Spiking Test for the Surge Margin Measurement in Gas Turbine Engines

  • Lee, Jinkun;Kim, Chuntaek;Sooseok Yang;Lee, Daesung
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2004년도 제22회 춘계학술대회논문집
    • /
    • pp.380-384
    • /
    • 2004
  • A fuel spiking test was performed to measure the surge margin of the compressor in a gas turbine engine. During the test, fuel spiking signal was superimposed on the engine controller demand and the mixed signals were used to control a fuel line servo-valve. For the superimposition, a subsystem composed of a fuel controller and a function generator was used. During the fuel spiking test, the original scheduled fuel signals and the modified signals were compared to guarantee the consistency excluding the spiking signals. The spiking signals were carefully selected to maintain the engine speed constant. The fuel spiking effects were checked by three dynamic pressure sensors. Sensors were placed before the servo-valve, after the servo-valve, and after the compressor location, respectively. The modulations of the spiking signal duration and fuel flow rate were examined to make the- operating point approach the surge region. The real engine test was performed at the Altitude Engine Test Facility (AETF) in Korea Aerospace Research Institute (KARI). In the real engine test, fuel spiking signals with 25~50 ㎳ of spiking signal time and 17~46 % of base fuel flow rate condition were used. The dithering signal was 5~6 ㎃ at 490 Hz. The test results showed good agreement between the fuel spiking signals and the fuel line pressure signals. Also, the compressor discharge pressure signals showed fuel spiking effects and the changes of the operating point on the compressor characteristic map could be traced.

  • PDF

전도 냉각형 10kJ 고온 초전도 에너지 저장장치의 열 부하 특성 해석 (Heat load characteristic analysis of conduction cooled 10kJ HTS SMES)

  • 김광민;김아롱;김진근;박해용;박민원;유인근;김석호;심기덕
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2009년도 제40회 하계학술대회
    • /
    • pp.2219_2220
    • /
    • 2009
  • The characteristics of the Superconducting Magnetic Energy Storage (SMES) system are faster response, longer life time, more economical, and environment friendly than other Uninterruptible Power Supply (UPS) using battery. Fast charge and discharge time of SMES system can provide powerful performance of improving power quality in the grid. In order to demonstrate the effectiveness of SMES, the authors make a 10kJ SMES system for connection with RTDS (Real Time Digital Simulator). Because the characteristics of superconducting magnet are very important in SMES system, the necessary items such as thermal characteristic, mechanical stress and protection circuit should be considered. In this paper, the authors experimented thermal characteristics of the 10kJ SMES system. The experiment was accomplished using a simulation coils made of aluminium. It has same dimension of the 10kJ class HTS SMES coil. The coil was cooled with GM (Gifford -McMahon) cryocooler through the OFHC (Oxgen Free High thermal Conductivity) conduction bar. The test results of cool down and heat loads characteristics of the simulation coils are described in detail.

  • PDF

Structural Behavior of Mixed $LiMn_2O_4-LiNi_{1/3}Co_{1/3}Mn_{1/3}O_2$ Cathode in Li-ion Cells during Electrochemical Cycling

  • 윤원섭;이상우
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2011년도 춘계학술발표대회
    • /
    • pp.5-5
    • /
    • 2011
  • The research and development of hybrid electric vehicle (HEV), plug-in hybrid electric vehicle (PHEV) and electric vehicle (EV) are intensified due to the energy crisis and environmental concerns. In order to meet the challenging requirements of powering HEV, PHEV and EV, the current lithium battery technology needs to be significantly improved in terms of the cost, safety, power and energy density, as well as the calendar and cycle life. One new technology being developed is the utilization of composite cathode by mixing two different types of insertion compounds [e.g., spinel $LiMn_2O_4$ and layered $LiMO_2$ (M=Ni, Co, and Mn)]. Recently, some studies on mixing two different types of cathode materials to make a composite cathode have been reported, which were aimed at reducing cost and improving self-discharge. Numata et al. reported that when stored in a sealed can together with electrolyte at $80^{\circ}C$ for 10 days, the concentrations of both HF and $Mn^{2+}$ were lower in the can containing $LiMn_2O_4$ blended with $LiNi_{0.8}Co_{0.2}O_2$ than that containing $LiMn_2O_4$ only. That reports clearly showed that this blending technique can prevent the decline in capacity caused by cycling or storage at elevated temperatures. However, not much work has been reported on the charge-discharge characteristics and related structural phase transitions for these composite cathodes. In this presentation, we will report our in situ x-ray diffraction studies on this mixed composite cathode material during charge-discharge cycling. The mixed cathodes were incorporated into in situ XRD cells with a Li foil anode, a Celgard separator, and a 1M $LiPF_6$ electrolyte in a 1 : 1 EC : DMC solvent (LP 30 from EM Industries, Inc.). For in situ XRD cell, Mylar windows were used as has been described in detail elsewhere. All of these in situ XRD spectra were collected on beam line X18A at National Synchrotron Light Source (NSLS) at Brookhaven National Laboratory using two different detectors. One is a conventional scintillation detector with data collection at 0.02 degree in two theta angle for each step. The other is a wide angle position sensitive detector (PSD). The wavelengths used were 1.1950 ${\AA}$ for the scintillation detector and 0.9999 A for the PSD. The newly installed PSD at beam line X18A of NSLS can collect XRD patterns as short as a few minutes covering $90^{\circ}$ of two theta angles simultaneously with good signal to noise ratio. It significantly reduced the data collection time for each scan, giving us a great advantage in studying the phase transition in real time. The two theta angles of all the XRD spectra presented in this paper have been recalculated and converted to corresponding angles for ${\lambda}=1.54\;{\AA}$, which is the wavelength of conventional x-ray tube source with Cu-$k{\alpha}$ radiation, for easy comparison with data in other literatures. The structural changes of the composite cathode made by mixing spinel $LiMn_2O_4$ and layered $Li-Ni_{1/3}Co_{1/3}Mn_{1/3}O_2$ in 1 : 1 wt% in both Li-half and Li-ion cells during charge/discharge are studied by in situ XRD. During the first charge up to ~5.2 V vs. $Li/Li^+$, the in situ XRD spectra for the composite cathode in the Li-half cell track the structural changes of each component. At the early stage of charge, the lithium extraction takes place in the $LiNi_{1/3}Co_{1/3}Mn_{1/3}O_2$ component only. When the cell voltage reaches at ~4.0 V vs. $Li/Li^+$, lithium extraction from the spinel $LiMn_2O_4$ component starts and becomes the major contributor for the cell capacity due to the higher rate capability of $LiMn_2O_4$. When the voltage passed 4.3 V, the major structural changes are from the $LiNi_{1/3}Co_{1/3}Mn_{1/3}O_2$ component, while the $LiMn_2O_4$ component is almost unchanged. In the Li-ion cell using a MCMB anode and a composite cathode cycled between 2.5 V and 4.2 V, the structural changes are dominated by the spinel $LiMn_2O_4$ component, with much less changes in the layered $LiNi_{1/3}Co_{1/3}Mn_{1/3}O_2$ component, comparing with the Li-half cell results. These results give us valuable information about the structural changes relating to the contributions of each individual component to the cell capacity at certain charge/discharge state, which are helpful in designing and optimizing the composite cathode using spinel- and layered-type materials for Li-ion battery research. More detailed discussion will be presented at the meeting.

  • PDF

유수지로부터의 담수 방류가 항 내 해수순환에 미치는 영향 (Effect of Freshwater Discharge from a Water Reservoir on the Flow Circulation in the Semi-Closed Harbor)

  • 최재윤;김종욱;이혜민;윤병일;우승범
    • 한국해안·해양공학회논문집
    • /
    • 제33권1호
    • /
    • pp.1-12
    • /
    • 2021
  • 담수 유입이 항만 내 해수순환에 미치는 영향을 조사하기 위하여, 인천 남항의 남측에 위치한 신국제 여객터미널 해역에 3차원 유동 수치 모델을 구축 및 적용하였다. 수치 모델의 모의 기간은 경기만 지역의 평수기인 5월 15일부터 6월 30일까지 약 45일이며, 모델 결과와 관측자료의 비교를 통하여 유동과 염분 변화에 관한 모델의 재현성을 검증하였다. 신국제 여객터미널에 영향을 미치는 담수 공급원은 한강과 항만 동쪽에 위치한 용현 갯골 유수지가 있다. 유수지의 유무에 따른 잔차류 결과를 분석해 보면, 한강과 유수지가 모두 고려된 실험안이 한강만을 고려한 실험안보다 염분 경사에 의한 2층 흐름 구조(표층은 외해 방향, 저층은 항 내를 향한 흐름 구조)가 수평적으로 더 강하게 발달한다. 이는, 한강으로부터의 담수 영향보다 유수지로부터의 담수 영향이 신국제 여객터미널 해역에서 더 크다는 것을 시사한다. 또한, 잔차류의 2층 흐름 구조는 북쪽에 위치한 인천 남항보다, 남쪽에 위치한 신국제 여객터미널에서 더 강한 2층 흐름 구조가 발생한다. 이 프로세스는 유수지로부터의 담수와 항 내로 전파된 조류가 만나 신국제 여객터미널 방향으로 회전되어 전파되면서, 남쪽에 위치한 신국제 여객터미널에 저염수가 전달됨에 따라 형성된다. 이러한 흐름은 신국제 여객터미널 전면부에서 수평적인 염분 경사에 의한 성층을 강화시키며, 강화된 성층은 2층 흐름 구조를 형성 및 유지시킨다. 따라서, 항만 내의 경압 작용에 의한 해수순환과 물질이동을 재현하고자 할 때, 유수지와 같은 국지적인 담수 유입원이라도, 항만 내의 해수순환에 지배적인 영향을 미치므로, 현장 관측 자료를 기반으로 유수지에서 방류되는 실시간 담수 유량에 따른 수치모델을 수행해야 한다.