• 제목/요약/키워드: Real time PCR

검색결과 2,007건 처리시간 0.028초

Detection and Quantification of Methanogenic Communities in Anaerobic Processes Using a Real-Time PCR

  • Yu Youngseob;Hwang Seokhwan
    • 한국미생물학회:학술대회논문집
    • /
    • 한국미생물학회 2003년도 International Meeting of the Microbiological Society of Korea
    • /
    • pp.118-121
    • /
    • 2003
  • A method for detection and quantification of aceticlastic methanogens using a real-time PCR with a TaqMan probe was developed. Two sets of primers and probes targeting the family Methanosarcinaceae and Methanosaetaceae were designed by using the Ribosormal Database Project (RDP) II, and softwares for phylogenetic probe design and sequence analysis. Target-group specificity of each set of primers and probe was verified by testing DNAs isolated from pure cultures of 28 archaeal strains purchased from DSMZ. Cell numbers in the 28 archaeal cultures and in the samples from anaerobic processes were quantified using a real-time PCR with the sets of primers and probe. In conclusion, the real-time PCR assay was very specific for the corresponding target methanogenic family and was proved to be a powerful method for quantification of aceticlastic methanogens in anaerobic processes.

  • PDF

Real-time PCR에 의한 equine herpesvirus type 1 (EHV-1) myeloencephalopathy의 진단 (A diagnosis of equine herpesvirus type 1 (EHV-1) myeloencephalopathy using real-time PCR)

  • 최성균;김주형;조길재
    • 한국동물위생학회지
    • /
    • 제37권1호
    • /
    • pp.59-65
    • /
    • 2014
  • Equine herpesvirus myeloencephalopathy, out of symptoms by equine herpesvirus type 1 (EHV-1) infection, can cause devastating losses on individual farms. Although myeloencephalopathy syndromes of horses in Korea have been recognized for a couple of years in horse populations, there is little study regarding the occurrence of EHV-1 infections. The present study was performed to detect the viral infection of horses with neurological syndrome using real-time PCR. Fifteen horses (27.3%) out of 55 horses with neurological deficiency were positive for EHV-1 viral antigen. Among these 7 horses, 4 horses were detected genotype of A2254/N752 and 3 horses G2254/D752 strain, respectively.

Detection of Fish Killing Dinoflagellates Cochlodinium polykrikoides and Karlodinium veneficum (Dinophyceae) in the East China Sea by Real-time PCR

  • Park, Tae-Gyu;Kang, Yang-Soon;Park, Young-Tae;Bae, Heon-Meen;Lee, Yoon
    • ALGAE
    • /
    • 제24권2호
    • /
    • pp.105-110
    • /
    • 2009
  • The rDNAs of figh-killing dinoflagellates Cochlodinium polykrikoides and Karlodinium veneficum were detected from the East China Sea by species-specific real-time PCR probes. Sequence analysesusing the partial ITS sequences from the real-time PCR products showed identical sequences with C. Polykrikoides and K. veneficum, respectively and low expectation values (E-value) of less than 1e-5 suggesting the presence of these organisms in the East Ching Sea shelf water that flows into the Tsushima Strait and the Yellow Sea.

두족류의 진위 판별을 위한 Real-time Quantitative PCR 검사법 개발 및 검증 (Development and Validation of Quick and Accurate Cephalopods Grouping System in Fishery Products by Real-time Quantitative PCR Based on Mitochondrial DNA)

  • 정인영;서용배;양지영;권기성;김군도
    • 한국식품위생안전성학회지
    • /
    • 제33권4호
    • /
    • pp.280-288
    • /
    • 2018
  • 본 연구는 국내에서 생산되거나 해외에서 수입되어 국내에서 유통되는 수산물 중에서 두족류를 문어류, 낙지류, 오징어류, 주꾸미류, 꼴뚜기류의 5개 그룹으로 구분하여 분석하였다. 두족류 5개 그룹을 판별을 하기 위해 미토콘드리아에 존재하는 유전자를 분석하였고, 그 중에서 COI (mitochondrial cytochrome C oxidase subunit I), 16s rRNA (16s ribosomal RNA), 12s rRNA (12s ribosomal RNA) 내에서 상당히 유사한 DNA 서열 부분과 일부 서열 변화 부분이 확인되었다. 명확하게 두족류 5개 그룹 판별을 하기 위해 COI, 16s rRNA, 12s rRNA 유전자의 일부 서열 변화 부분에서 그룹 특이적 프라이머 세트를 디자인하였다. 국내 외에서 확보한 두족류 시료(참문어, 낙지, 살오징어, 아메리카 대왕오징어, 갑오징어, 주꾸미, 모래주꾸미, 하이야주꾸미, 참꼴뚜기, 창꼴뚜기, 한치꼴뚜기)의 genomic DNA을 추출하여 각 그룹의 특이적 프라이머를 이용하여 SYBR 기반의 real-time PCR 시스템에 의해 분석되었고, threshold cycle (Ct) value와 같은 real-time PCR 결과 분석에 의해 두족류 내 그룹 판별이 가능하였다(Table 3).

심장사상충에 감염된 개의 혈액에서 심장사상충 유전자를 검출할 수 있는 실시간 중합효소연쇄반응 기법 개발 (Development of Real-time PCR Assays for Detection of Dirofilaria immitis from Infected Dog Blood)

  • 오인영;김경태;전진현;신재호;성호중
    • 대한임상검사과학회지
    • /
    • 제48권2호
    • /
    • pp.88-93
    • /
    • 2016
  • 선형 사상충의 일종인 심장사상충은 개의 심폐 사상충증을 유발한다. 이에 본 연구의 목적은 심장사상충을 효과적으로 검출할 수 있는 실시간 중합효소연쇄반응 기법을 개발함에 있다. 연구에 있어서 사용된 프라이머 및 프로브는 선행연구에서 제작된 심장사상충 특이 프라이머 및 새롭게 제작된 TaqMan 프로브를 이용하였다. 선행연구에서 제작된 프라이머 및 농도별로 희석된 게놈유전자와 플라스미드유전자가 SYBR Green 실시간 중합효소연쇄반응 수행에 이용되었으며, 중합효소연쇄반응 과정 중 증폭 이후의 녹는 곡선의 결과를 분석하였다. 분석결과 사용된 프라이머는 각각 게놈유전자 및 플라스미드 유전자에서 특이 녹는 곡선을 나타냄에 따라 심장사상충 특이 사이토크롬 C 산화효소 유전자만을 증폭하고 있음을 확인 할 수 있었다. 새롭게 제작된 TaqMan 프로브는 SYBR Green 실시간 중합효소연쇄반응과의 결과를 농도별로 희석된 플라스미드 유전자를 이용하여 비교 분석하였고, 분석결과 TaqMan 프로브를 이용한 실시간 중합효소연쇄반응이 검출효율 및 특이도에 있어서 우수함을 확인할 수 있었다. 본 연구를 통하여 개발한 실시간 중합효소연쇄반응은 기존의 전통적인 진단기법의 한계를 극복할 수 있는 신속하고 정확한 향상된 진단기법을 제시한다.

Development of Real-Time PCR for the Detection of Clostridium perfringens in Meats and Vegetables

  • Chon, Jung-Whan;Park, Jong-Seok;Hyeon, Ji-Yeon;Park, Chan-Kyu;Song, Kwang-Young;Hong, Kwang-Won;Hwang, In-Gyun;Kwak, Hyo-Sun;Seo, Kun-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • 제22권4호
    • /
    • pp.530-534
    • /
    • 2012
  • A real-time PCR assay was developed and validated inhouse specifically for the detection of Clostridium perfringens (Cl. perfringens) in meats and vegetables by comparing with the culture method. The detection limit of the real-time PCR assay in phosphate-buffered saline was $10^2$ CFU/ml. When the two methods were compared in food samples inoculated with Cl. perfringens, the culture method detected 52 positives, whereas real-time PCR detected 51 positives out of 160 samples. The difference was without statistical significance (p>0.05). Real-time PCR assay is an option for quality assurance laboratories to perform standard diagnostic tests, considering its detection ability and time-saving efficiency.

Quantitative Detection of Residual E. coli Host Cell DNA by Real-Time PCR

  • Lee, Dong-Hyuck;Bae, Jung-Eun;Lee, Jung-Hee;Shin, Jeong-Sup;Kim, In-Seop
    • Journal of Microbiology and Biotechnology
    • /
    • 제20권10호
    • /
    • pp.1463-1470
    • /
    • 2010
  • E. coli has long been widely used as a host system for the manufacture of recombinant proteins intended for human therapeutic use. When considering the impurities to be eliminated during the downstream process, residual host cell DNA is a major safety concern. The presence of residual E. coli host cell DNA in the final products is typically determined using a conventional slot blot hybridization assay or total DNA Threshold assay. However, both the former and latter methods are time consuming, expensive, and relatively insensitive. This study thus attempted to develop a more sensitive real-time PCR assay for the specific detection of residual E. coli DNA. This novel method was then compared with the slot blot hybridization assay and total DNA Threshold assay in order to determine its effectiveness and overall capabilities. The novel approach involved the selection of a specific primer pair for amplification of the E. coli 16S rRNA gene in an effort to improve sensitivity, whereas the E. coli host cell DNA quantification took place through the use of SYBR Green I. The detection limit of the real-time PCR assay, under these optimized conditions, was calculated to be 0.042 pg genomic DNA, which was much higher than those of both the slot blot hybridization assay and total DNA Threshold assay, where the detection limits were 2.42 and 3.73 pg genomic DNA, respectively. Hence, the real-time PCR assay can be said to be more reproducible, more accurate, and more precise than either the slot blot hybridization assay or total DNA Threshold assay. The real-time PCR assay may thus be a promising new tool for the quantitative detection and clearance validation of residual E. coli host cell DNA during the manufacturingprocess for recombinant therapeutics.

조류인플루엔자 H5N1 바이러스 유전자의 신속 검출을 위한 초고속 다중 실시간 PCR법의 개발 (Development of Ultra-rapid Multiplex Real-time PCR for the Detection of Genes from Avian Influenza Virus subtype H5N1)

  • 김을환;이동우;한상훈;임윤규;윤병수
    • 대한수의학회지
    • /
    • 제47권4호
    • /
    • pp.399-407
    • /
    • 2007
  • Cause of high lethality and dissemination to human being, new development of rapid method for the detection of highly pathogenic Avian Influenza Virus (AIV) is still necessary. For the detection of AIV subtype H5N1, typical pathogenic AIV, new method to confirm sub-typing of this virus is also needed. For the purpose of ultra-rapid detection and sub-typing of hemagglutinin and neuraminidase of AIV, this study was planned. As the results we could demonstrate an ultra-rapid multiplex real-time PCR (URMRT PCR) for the detection of AIV In this study, the URMRT PCR were optimized with synthesized AIV H5- and AIV Nl-specific DNA templates and GenSpector TMC, which is a semiconductor process technology based real-time PCR system with high frequencies of temperature monitoring. Under eight minutes, the amplifications of two AIV subtype-specific PCR products were successfully and independently detected by 30 cycled ultra-rapid PCR, including melting point analysis, from $1{\times}10^3$ copies of mixed template DNA. The URMRT PCR for the detection of AIV H5N 1 developed in this study could be expected to apply not only detections of different AIVs, but also various pathogens. It was also discussed that this kind of the fastest PCR based detection method could be improved by advance of related technology in near future.

Application of the rpoS Gene for Species-Specific Detection of Vibrio vulnificus by Real-Time PCR

  • Kim, Dong-Gyun;Ahn, Sun-Hee;Kim, Lyoung-Hwa;Park, Kee-Jai;Hong, Yong-Ki;Kong, In-Soo
    • Journal of Microbiology and Biotechnology
    • /
    • 제18권11호
    • /
    • pp.1841-1847
    • /
    • 2008
  • Vibrio vulnificus is a causative agent of serious diseases in humans, resulting from the contact of wound with seawater or consumption of raw seafood. Several studies aimed at detecting V. vulnificus have targeted vvh as a representative virulence toxin gene belonging to the bacterium. In this study, we targeted the rpoS gene, a general stress regulator, to detect V. vulnificus. PCR specificity was identified by amplification of 8 V. vulnificus templates and by the loss of a PCR product with 36 non-V. vulnificus strains. The PCR assay had the 273-bp fragment and the sensitivity of 10 pg DNA from V. vulnificus. SYBR Green I-based real-time PCR assay targeting the rpoS gene showed a melting temperature of approximately $84^{\circ}C$ for the V. vulnificus strains. The minimum level of detection by real-time PCR was 2 pg of purified genomic DNA, or $10^3$ V. vulnificus cells from pure cultured broth and $10^3$ cells in 1 g of oyster tissue homogenates. These data indicate that real-time PCR is a sensitive, species-specific, and rapid method for detecting this bacterium, using the rpoS gene in pure cultures and in infected oyster tissues.

Validation of a Real-Time RT-PCR Method to Quantify Newcastle Disease Virus (NDV) Titer and Comparison with Other Quantifiable Methods

  • Jang, Juno;Hong, Sung-Hwan;Kim, Ik-Hwan
    • Journal of Microbiology and Biotechnology
    • /
    • 제21권1호
    • /
    • pp.100-108
    • /
    • 2011
  • A method for the rapid detection and quantification of Newcastle disease virus (NDV) produced in an animal cell culture-based production system was developed to enhance the speed of the NDV vaccine manufacturing process. A SYBR Green I-based real-time RT-PCR was designed with a conventional, inexpensive RT-PCR kit targeting the F gene of the NDV LaSota strain. The method developed in this study was validated for specificity, accuracy, precision, linearity, limit of detection (LOD), limit of quantification (LOQ), and robustness. The validation results satisfied the predetermined acceptance criteria. The validated method was used to quantify virus samples produced in an animal cell culture-based production system. The method was able to quantify the NDV samples from mid- or late-production phases, but not effective on samples from the early-production phase. For comparison with other quantifiable methods, immunoblotting, plaque assay, and tissue culture infectious dose 50 ($TCID_{50}$) assay were also performed with the NDV samples. The results demonstrated that the real-time RT-PCR method is suitable for the rapid quantification of virus particles produced in an animal cell-culture-based production system irrespective of viral infectivity.