• Title/Summary/Keyword: Real time 3D imaging

Search Result 102, Processing Time 0.029 seconds

Computer-aided Maxillofacial ablation and reconstruction Surgery (임상가를 위한 특집 1 - 컴퓨터 기반 악골 종양의 절제 및 재건술)

  • Moon, Seong-Yong;Lim, Sung-Hoon
    • The Journal of the Korean dental association
    • /
    • v.52 no.10
    • /
    • pp.596-601
    • /
    • 2014
  • Computer-aided surgery is popular and useful in the field of oral and maxillofacial surgery, because of the possibility of simulation with a high accuracy. In all aspects of surgery, proper planning facilitates more predictable operative results, however before the use of virtual planning, much of this relied on 2-dimensional (2-D) imaging for treatment planning on a 3-dimensional (3-D) object and surgical trial and error. With real-time instrument positioning and clear anatomic identification, a computer-assisted navigation system (CANS) is exceptionally helpful in maxillofacial surgery. These techniques enable performing precise bony ablation and reconstruction, and also decrease surgical time and donor site defect.

Optical Resonance-based Three Dimensional Sensing Device and its Signal Processing (광공진 현상을 이용한 입체 영상센서 및 신호처리 기법)

  • Park, Yong-Hwa;You, Jang-Woo;Park, Chang-Young;Yoon, Heesun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.10a
    • /
    • pp.763-764
    • /
    • 2013
  • A three-dimensional image capturing device and its signal processing algorithm and apparatus are presented. Three dimensional information is one of emerging differentiators that provides consumers with more realistic and immersive experiences in user interface, game, 3D-virtual reality, and 3D display. It has the depth information of a scene together with conventional color image so that full-information of real life that human eyes experience can be captured, recorded and reproduced. 20 Mega-Hertz-switching high speed image shutter device for 3D image capturing and its application to system prototype are presented[1,2]. For 3D image capturing, the system utilizes Time-of-Flight (TOF) principle by means of 20MHz high-speed micro-optical image modulator, so called 'optical resonator'. The high speed image modulation is obtained using the electro-optic operation of the multi-layer stacked structure having diffractive mirrors and optical resonance cavity which maximizes the magnitude of optical modulation[3,4]. The optical resonator is specially designed and fabricated realizing low resistance-capacitance cell structures having small RC-time constant. The optical shutter is positioned in front of a standard high resolution CMOS image sensor and modulates the IR image reflected from the object to capture a depth image (Figure 1). Suggested novel optical resonator enables capturing of a full HD depth image with depth accuracy of mm-scale, which is the largest depth image resolution among the-state-of-the-arts, which have been limited up to VGA. The 3D camera prototype realizes color/depth concurrent sensing optical architecture to capture 14Mp color and full HD depth images, simultaneously (Figure 2,3). The resulting high definition color/depth image and its capturing device have crucial impact on 3D business eco-system in IT industry especially as 3D image sensing means in the fields of 3D camera, gesture recognition, user interface, and 3D display. This paper presents MEMS-based optical resonator design, fabrication, 3D camera system prototype and signal processing algorithms.

  • PDF

Experimental Study of Two-step Phase-shifting Digital Holography based on the Calculated Intensity of a Reference Wave

  • Li, Jun;Pan, Yang Yang;Li, Jiao sheng;Li, Rong;Zheng, Tao
    • Journal of the Optical Society of Korea
    • /
    • v.18 no.3
    • /
    • pp.230-235
    • /
    • 2014
  • Two-step quadrature phase-shifting digital holography based on the calculated intensity of a reference wave is proposed. In the Mach-Zehnder interferometer (MZI) architecture, the method only records two quadrature-phase holograms, without reference-wave intensity or object-wave intensity measurement, to perform object recoding and reconstruction. When the reference-wave intensity is calculated from the 2D correlation coefficient (CC) method that we presented, the clear reconstruction image can be obtained by some specific algorithm. Its feasibility and validity were verified by a series of experiments with 2D objects and 3D objects. The presented method will be widely used in real-time or dynamic digital holography applications.

High Speed SD-OCT System Using GPU Accelerated Mode for in vivo Human Eye Imaging

  • Cho, Nam Hyun;Jung, Unsang;Kim, Suhwan;Jung, Woonggyu;Oh, Junghwan;Kang, Hyun Wook;Kim, Jeehyun
    • Journal of the Optical Society of Korea
    • /
    • v.17 no.1
    • /
    • pp.68-72
    • /
    • 2013
  • We developed an SD-OCT (Spectral Domain-Optical Coherence Tomography) system which uses a GPU (Graphics Processing Unit) for processing. The image size from the SD-OCT system is $1024{\times}512$ and the speed is 110 frame/sec in real-time. K-domain linearization, FFT (Fast Fourier Transform), and log scaling were included in the GPU processing. The signal processing speed was about 62 ms using a CPU (Central Processing Unit) and 1.6 ms using a GPU, which is 39 times faster. We performed an in-vivo retinal scan, and reconstructed a 3D visualization based on C-scan images. As a result, there were minimal motion artifacts and we confirmed that tomograms of blood vessels, the optic nerve, and the optic disk are clearly identified. According to the results of this study, this SD-OCT can be applied to real-time 3D display technology, particularly auxiliary instruments for eye operations in ophthalmology.

Ultrahigh-Resolution Spectral Domain Optical Coherence Tomography Based on a Linear-Wavenumber Spectrometer

  • Lee, Sang-Won;Kang, Heesung;Park, Joo Hyun;Lee, Tae Geol;Lee, Eun Seong;Lee, Jae Yong
    • Journal of the Optical Society of Korea
    • /
    • v.19 no.1
    • /
    • pp.55-62
    • /
    • 2015
  • In this study we demonstrate ultrahigh-resolution spectral domain optical coherence tomography (UHR SD-OCT) with a linear-wavenumber (k) spectrometer, to accelerate signal processing and to display two-dimensional (2-D) images in real time. First, we performed a numerical simulation to find the optimal parameters for the linear-k spectrometer to achieve ultrahigh axial resolution, such as the number of grooves in a grating, the material for a dispersive prism, and the rotational angle between the grating and the dispersive prism. We found that a grating with 1200 grooves and an F2 equilateral prism at a rotational angle of $26.07^{\circ}$, in combination with a lens of focal length 85.1 mm, are suitable for UHR SD-OCT with the imaging depth range (limited by spectrometer resolution) set at 2.0 mm. As guided by the simulation results, we constructed the linear-k spectrometer needed to implement a UHR SD-OCT. The actual imaging depth range was measured to be approximately 2.1 mm, and axial resolution of $3.8{\mu}m$ in air was achieved, corresponding to $2.8{\mu}m$ in tissue (n = 1.35). The sensitivity was -91 dB with -10 dB roll-off at 1.5 mm depth. We demonstrated a 128.2 fps acquisition rate for OCT images with 800 lines/frame, by taking advantage of NVIDIA's compute unified device architecture (CUDA) technology, which allowed for real-time signal processing compatible with the speed of the spectrometer's data acquisition.

High Efficiency AMOLED using Hybrid of Small Molecule and Polymer Materials Patterned by Laser Transfer

  • Chin, Byung-Doo;Suh, Min-Chul;Kim, Mu-Hyun;Kang, Tae-Min;Yang, Nam-Choul;Song, Myung-Won;Lee, Seong-Taek;Kwon, Jang-Hyuk;Chung, Ho-Kyoon;Wolk, Martin B.;Bellmann, Erika;Baetzold, John P.
    • Journal of Information Display
    • /
    • v.4 no.3
    • /
    • pp.1-5
    • /
    • 2003
  • Laser-Induced Thermal Imaging (LITI) is a laser addressed patterning process and has unique advantages such as high-resolution patterning with over all position accuracy of the imaged stripes of within 2.5 micrometer and scalability to large-size mother glass. This accuracy is accomplished by real-time error correction and a high-resolution stage control system that includes laser interferometers. Here the new concept of hybrid system that complement the merits of small molecule and polymer to be used as an OLED; our system can realize easy processing of light emitting polymers and high luminance efficiency of small molecules. LITI process enables the stripes to be patlerned with excellent thickness uniformity and multi-stacking of various functional layers without having to use any type of fine metal shadow mask. In this study, we report a full-color hybrid OLED using the multi-layered structure consisting of small molecules and polymers.

Use of real-time ultrasound imaging for biofeedback of diaphragm motion during normal breathing in healthy subjects

  • Cho, Ji-Eun;Hwang, Dal-Yeon;Hahn, Joohee;Lee, Wan-Hee
    • Physical Therapy Rehabilitation Science
    • /
    • v.7 no.3
    • /
    • pp.95-101
    • /
    • 2018
  • Objective: To determine if the provision of visual biofeedback using real-time rehabilitative ultrasound imaging (RUSI) enhances the acquisition and retention of diaphragm muscle recruitment during exercise. Design: Two group pretest posttest design. Methods: Thirty healthy subjects were randomly assigned to the verbal feedback group (VG, n=15) or the visual and verbal feedback group (VVG, n=15). The VG performed breathing exercises 10 times with verbal feedback, and the VVG also performed breathing exercises 10 times with verbal feedback and visual feedback with the use of RUSI to measure changes in diaphragm thickness (DT). For DT, the mid-axillary lines between ribs 8 and 9 on both sides were measured in standing, and then the chest wall was perpendicularly illuminated using a linear transducer with the patients in supine to observe the region between rib 8 and 9 and to obtain 2-dimensional images. DT was measured as the distance between the two parallel lines that appeared bright in the middle of the pleura and the peritoneum. After one week, three repetitions (follow-up session) were performed to confirm retention effects. Intra- and between- group percent changes in diaphragm muscle thickness were assessed. Results: In the VVG, the intervention value had a medium effect size compared to the baseline value, but the follow-up value decreased to a small effect size. In the between-group comparisons, during the intervention session, the VVG showed no significant effect on percent change of DT but had a medium effect size compared to the VG (p=0.050, Cohen's d=0.764). During the follow-up session, retention effect did not persist (p=0.311, Cohen's d=0.381). Conclusions: RUSI can be used to provide visual biofeedback and improve performance and retention in the ability to activate the diaphragm muscle in healthy subjects. Future research needs to establish a protocol for respiratory intervention to maintain the effect of diaphragmatic breathing training using RUSI with visual feedback.

Adaptive quantization for effective data-rate reduction in ultrafast ultrasound imaging (초고속 초음파 영상의 효과적인 데이터율 저감을 위한 적응 양자화)

  • Doyoung Jang;Heechul Yoon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.42 no.5
    • /
    • pp.422-428
    • /
    • 2023
  • Ultrafast ultrasound imaging has been applied to various imaging approaches, including shear wave elastography, ultrafast Doppler, and super-resolution imaging. However, these methods are still challenging in real-time implementation for three Dimension (3D) or portable applications because of their massive data rate required. In this paper, we proposed an adaptive quantization method that effectively reduces the data rate of large Radio Frequency (RF) data. In soft tissue, ultrasound backscatter signals require a high dynamic range, and thus typical quantization used in the current systems uses the quantization level of 10 bits to 14 bits. To alleviate the quantization level to expand the application of ultrafast ultrasound imaging, this study proposed a depth-sectional quantization approach that reduces the quantization errors. For quantitative evaluation, Field II simulations, phantom experiments, and in vivo imaging were conducted and CNR, spatial resolution, and SSIM values were compared with the proposed method and fixed quantization method. We demonstrated that our proposed method is capable of effectively reducing the quantization level down to 3-bit while minimizing the image quality degradation.

High Efficiency AMOLED Using Hybrid of Small Molecule and Polymer Materials Patterned by Laser Transfer

  • Chin, Byung-Doo;Suh, Min-Chul;Kim, Mu-Hyun;Kang, Tae-Min;Yang, Nam-Choul;Song, Myung-Won;Lee, Seong-Taek;Kwon, Jang-Hyuk;Chung, Ho-Kyoon;Wolk, Martin B.;Bellmann, Erika;Baetzold, John P.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2003.07a
    • /
    • pp.163-166
    • /
    • 2003
  • Laser-Induced Thermal Imaging (LITI) is a laser addressed patterning process and has unique advantages, such as high-resolution patterning with over-all position accuracy of the imaged stripes within 2.5 micrometer and scalability to large-size mother glass. This accuracy is accomplished using real-time error correction and a high -resolution stage control system that includes laser interferometers. Here the new concept of mixed hybrid system which complement the advantages of small molecular and polymeric materials for use as an OLED; our system can realize the easy processing of polymers and high luminance efficiency of recently developed small molecules. LITI process enables to pattern the stripes with excellent thickness uniformity and multi-stacking of various functional layers without using any type of fine metal shadow mask. In this study, we report a full-color hybrid OLED using the multi-layered structure of small molecular/polymeric species.

  • PDF

Estimating Illumination Distribution to Generate Realistic Shadows in Augmented Reality

  • Eem, Changkyoung;Kim, Iksu;Jung, Yeongseok;Hong, Hyunki
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.6
    • /
    • pp.2289-2301
    • /
    • 2015
  • Mobile devices are becoming powerful enough to realize augmented reality (AR) application. This paper introduces two AR methods to estimate an environmental illumination distribution of a scene. In the first method, we extract the lighting direction and intensity from input images captured with a front-side camera of a mobile device, using its orientation sensor. The second method extracts shadow regions cast by three dimensional (3D) AR marker of known shape and size. Because previous methods examine per pixel shadow intensity, their performances are much affected by the number of sampling points, positions, and threshold values. By using a simple binary operation between the previously clustered shadow regions and the threshold real shadow regions, we can compute efficiently their relative area proportions according to threshold values. This area-based method can overcome point sampling problem and threshold value selection. Experiment results demonstrate that the proposed methods generate natural image with multiple smooth shadows in real-time.