• Title/Summary/Keyword: Real ship

Search Result 721, Processing Time 0.023 seconds

Real-time Visualization of Ship and Buoy Motions Coupled with Ocean Waves in a Ship Handling Simulator (선박 운항 시뮬레이터에서 해양파와 연동된 선박 및 부표 운동의 실시간 가시화)

  • Yeo, Dong-Jin;Cha, Moo-Hyun;Mun, Du-Hwan
    • Korean Journal of Computational Design and Engineering
    • /
    • v.16 no.3
    • /
    • pp.227-235
    • /
    • 2011
  • Ship handling simulator should have capabilities of calculating ship motions (heave, pitch, and roll) at given sea state and displaying the calculated motions through a real-time 3D visualization system. Motion solver of a ship handling simulator generally calculates those motions in addition to position for an own ship, a main simulation target, but provides only position information for traffic ships. Therefore, it is required to simulate real-time traffic ship and buoy motions coupled with ocean waves in a ship handling simulator for the realistic visualization. In the paper, the authors propose a simple dynamics model by which ship and buoy motions are calculated with the input data of wave height and discuss a method for the implementation of a ship and buoy motions calculation module.

A Study on Ship's Maneuverability Evaluation by Real Ship Test (선박조종성능 평가를 위한 실선 실험연구)

  • Im, Nam-Kyun;Han, Song-Hee;Nguyen, Thanh Nhat Lai
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.17 no.4
    • /
    • pp.383-389
    • /
    • 2011
  • At the design stage, it is very important to know the ship maneuvering characteristics from the view point of ship performance and for the safety of navigation. IMO only gives some criteria for ships in full load even keel condition. However, the ship generally is operated not only in full load condition but also in half load condition or ballast condition. Therefore we must estimate the ship maneuvering in different loading condition to ensure that the ship will satisfy with IMO rules and navigate safely in every condition. In this paper, we have investigated the maneuvering characteristics of a ship by simulation and experiments with real ship. By comparing with the results of simulation, the real ship tests conform with simulation test and previous researches. Therefore, the method base on real data is well done to estimate the ship maneuvering in different loading conditions. The change of ship's manoeuverability accoriding to ship's operation conditions was estimated.

A Study on Ship Path Planning Algorithm based on Real-time Ocean Environment (실해역 환경을 고려한 선박의 최적항해계획 알고리즘 연구)

  • Kim, Dongjun;Seol, Hyeonju;Kim, Jinju
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.19 no.2
    • /
    • pp.252-260
    • /
    • 2016
  • Unlike terrestrial transportation, marine transportation should consider environment factors in order to optimize path planning. This is because, ship's path planning is greatly influenced by real-time ocean environment-sea currents, wave and wind. Therefore, in this study, we suggest a ship path planning algorithm based on real-time ocean environment using not only $A^*$ algorithm but also path smoothing method. Moreover, in order to improve objective function value, we also consider ship's moving distance based on ship's location and real-time ocean environment data on grid map. The efficiency of the suggested algorithm is proved by comparing with $A^*$ algorithm only. This algorithm can be used as a reasonable automatics control system algorithm for unmaned ship.

EXPERIMENTAL RESEARCH ON SHIP MANEUVERABILITY ACCORDING TO LOADING CONDITION

  • Nguyen, Thanh Nhat Nam;Im, Nam-Kyun;Tran, Van Luong
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2011.06a
    • /
    • pp.7-9
    • /
    • 2011
  • In December 2002, International Maritime Organization (IMO) has adopted the Resolution MSA.137(76) Standards for the Ship Maneuverability. For applying the standards, we have to estimate and evaluate the Maneuverability of a ship at the design stage in difference of trim and displacement as accurate as possible. In this paper, the effect of loading condition on the ship Maneuverability was investigated through 3 methods : numerical simulation, free running model ship and real ship data.. Firstly, We carried out numerical simulation, free running model ship experiments and real ship experiments at ballast condition, half loaded condition and full loaded condition with difference of trim.. Secondly, by comparing these results of 3 methods, we draw out the trend of ship Maneuverability due to the change of trim and displacement of a ship.

  • PDF

Development of a Simple Manoeuvring Model for Ship-handling Simulator by Analytical Methods (해석적 방법에 의한 선박 시뮬레이터용 단순 조종 모델 개발)

  • Kim, Dong-Jin;Yeo, Dong-Jin;Rhee, Key-Pyo
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.47 no.6
    • /
    • pp.776-781
    • /
    • 2010
  • In the ship-handling simulator, it is important for a ship manoeuvring model to represent the dynamic characteristic of a ship and to be simple for reducing calculation time. Especially, even if principal dimensions of a ship are given in initial design stage, or manoeuvring test data are only given by model or real ship's trials, simulations are often needed to check the manoeuvrability of a ship. In this paper, a simple manoeuvring model based on turning test data of a ship is mathematically developed. And the simulation results are verified by comparing with turning test results of a real ship.

Construction and verification of nonparameterized ship motion model based on deep neural network

  • Wang Zongkai;Im Nam-kyun
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2022.11a
    • /
    • pp.170-171
    • /
    • 2022
  • A ship's maneuvering motion model is important in a computer simulation, especially under the trend of intelligent navigation. This model is usually constructed by the hydrodynamic parameters of the ship which are generated by the principles of hydrodynamics. Ship's motion model is a nonlinear function. By using this function, ships' motion elements can be calculated, then the ship's trajectory can be predicted. Deeping neural networks can construct any linear or non-linear equation theoretically if there have enough and sufficient training data. This study constructs some kinds of deep Networks and trains this network by real ship motion data, and chooses the best one of the networks, uses real data to train it, then uses it to predict the ship's trajectory, getting some conclusions and experiences.

  • PDF

Real-time geometry identification of moving ships by computer vision techniques in bridge area

  • Li, Shunlong;Guo, Yapeng;Xu, Yang;Li, Zhonglong
    • Smart Structures and Systems
    • /
    • v.23 no.4
    • /
    • pp.359-371
    • /
    • 2019
  • As part of a structural health monitoring system, the relative geometric relationship between a ship and bridge has been recognized as important for bridge authorities and ship owners to avoid ship-bridge collision. This study proposes a novel computer vision method for the real-time geometric parameter identification of moving ships based on a single shot multibox detector (SSD) by using transfer learning techniques and monocular vision. The identification framework consists of ship detection (coarse scale) and geometric parameter calculation (fine scale) modules. For the ship detection, the SSD, which is a deep learning algorithm, was employed and fine-tuned by ship image samples downloaded from the Internet to obtain the rectangle regions of interest in the coarse scale. Subsequently, for the geometric parameter calculation, an accurate ship contour is created using morphological operations within the saturation channel in hue, saturation, and value color space. Furthermore, a local coordinate system was constructed using projective geometry transformation to calculate the geometric parameters of ships, such as width, length, height, localization, and velocity. The application of the proposed method to in situ video images, obtained from cameras set on the girder of the Wuhan Yangtze River Bridge above the shipping channel, confirmed the efficiency, accuracy, and effectiveness of the proposed method.

Precise Surveying of Ship Launching Distance Using RTK-GPS (RTK-GPS를 이용한 선박진수거리 정밀측량)

  • 장용구;송석진;강인준
    • Proceedings of the Korean Association of Geographic Inforamtion Studies Conference
    • /
    • 2004.03a
    • /
    • pp.455-461
    • /
    • 2004
  • Now, GPS survey is used on equipment from leisure to precise geodetic survey and nation admits the result of GPS survey. When surveyors perform precise GPS survey, they use post processing method but they greatly use real time processing method to consider field status. Especially, when surveyors measure the result of moving target, they use real time GPS survey to the best method. For this study, the author precisely surveyed distance of ship launching from shipyard on real time using real time precise GPS method. In this paper, the author compares and examines the accuracy of first real time precise GPS survey method nationally and the capability on use. And the author performed real time precise GPS survey in NOKBONG and 21C shipyard positioning at GEOJEDO.

  • PDF

An Evaluation of Real-Time Navigational Safety with Weather Conditions (함정의 기상 변화에 다른 실시간 항해 안전성 평가)

  • 공길영
    • Journal of the military operations research society of Korea
    • /
    • v.25 no.1
    • /
    • pp.169-177
    • /
    • 1999
  • There is some limitations for ship to gather weather and sea state information. To make up for this weakness, land organizations can gather the wider variety of information, evaluate the navigational safety on a ship, and supply this information to the ship. In this study, the involuntary speed loss are calculated using the real-time information on weather and considering the increase of resistance induced by wave, and the navigational safety in a seaway is evaluated. The used model for computer simulation is Lpp 93m frigate class ship. The feasibility study is made of using simulation results in actual operation.

  • PDF

The Effect of Roll and Pitch Motion on Ship Magnetic Signature

  • Birsan, Marius;Tan, Reinier
    • Journal of Magnetics
    • /
    • v.21 no.4
    • /
    • pp.503-508
    • /
    • 2016
  • The roll- and pitch-induced eddy currents create a magnetic field that contributes to the total magnetic signature of naval vessels. The magnetic signature is of concern, as it exposes the ship to the threat of modern influence mines. It is estimated that the eddy current is the second most important source contributing to a ship's underwater magnetic field following the ferromagnetic effect. In the present paper, the finite element (FE) method is used to predict the eddy current signature of a real ship. The FE model is validated using the measurements of the Canadian research vessel CFAV QUEST at the Earth's Field Simulator (EFS) in Schirnau, Germany. Modeling and validation of the eddy current magnetic signature for a real ship represents a novelty in the field. It is shown that the characteristics of this signature depend on frequency. Based on these results, a ship's degaussing system could be improved to cancel both the ferromagnetic and the eddy current contribution to the magnetic signature simultaneously, reducing the susceptibility to sea mines.