• Title/Summary/Keyword: Real mapping

Search Result 749, Processing Time 0.025 seconds

LERAY-SCHAUDER DEGREE THEORY APPLIED TO THE PERTURBED PARABOLIC PROBLEM

  • Jung, Tacksun;Choi, Q-Heung
    • Korean Journal of Mathematics
    • /
    • v.17 no.2
    • /
    • pp.219-231
    • /
    • 2009
  • We show the existence of at least four solutions for the perturbed parabolic equation with Dirichlet boundary condition and periodic condition when the nonlinear part cross two eigenvalues of the eigenvalue problem of the Laplace operator with boundary condition. We obtain this result by using the Leray-Schauder degree theory, the finite dimensional reduction method and the geometry of the mapping. The main point is that we restrict ourselves to the real Hilbert space instead of the complex space.

  • PDF

The Efficient Memory Mapping of FPGA Implemenation for Real-Time 2-D Discrete Wavelet Transform using Mallat tree algorithm (Mallat tree 방법을 이용한 실시간 2-D DWT의 FPGA 구현을 위한 효율적인 메모리 사상)

  • 김왕현;서영호;김종현;김동욱
    • Proceedings of the IEEK Conference
    • /
    • 2001.06d
    • /
    • pp.105-108
    • /
    • 2001
  • This paper proposed an efficient memory scheduling method (E$^2$M$^2$) by which the real-time image compression using 2-dimensional discrete wavelet transform(2-D DWT) is possible in an FPGA chip. In this paper, we assumed that the 2-D DWT was performed as the Mallat-tree. After the memory mapping method was proved in software, the memory controller was designed for an commercial SDRAM IC.

  • PDF

Image Processing using Thermal Infrared Image (열적외선 이미지를 이용한 영상 처리)

  • Jeong, Byoung-Jo;Jang, Sung-Whan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.7
    • /
    • pp.1503-1508
    • /
    • 2009
  • This study applied image processing techniques, constructed to real-time, to thermal infrared camera image. Thermal infrared image data was utilized for hot mapping, cool mapping, and rainbow mapping according to changing temperature. It was histogram image processing techniques so that detected shade contrast function of the thermal infrared image, and the thermal infrared image's edge was extracted to classification of object. Moreover, extraction of temperature from image was measured by using the image information program.

Performance Estimation of Tone Mapping for HDR Images (HDR이미지 톤 매핑 알고리즘의 성능 평가)

  • Lee, Yong-Hwan
    • Journal of the Semiconductor & Display Technology
    • /
    • v.20 no.4
    • /
    • pp.182-186
    • /
    • 2021
  • Tone mapping operator is designed to reproduce visibility of real-world scenes such as HDR images on limited dynamic range display devices. This paper presents and implements compare and to estimate some tone mapping algorithms commonly used. The evaluation is performed by applying tone mapping operators on 7 HDR images, and by presenting the results with subjective estimation. Reinhard tone mapping algorithm is the best in the visual experimental results. The goal of this work is to discuss what is visible of high dynamic range on a normal display device and to determine to which better algorithm is. This work motivates us to make more progress through the new proposal of tone mapping operator on future work.

The Mirror-based real-time dynamic projection mapping design and dynamic object detection system research (미러 방식의 실시간 동적 프로젝션 매핑 설계 및 동적 사물 검출 시스템 연구)

  • Soe-Young Ahn;Bum-Suk Seo;Sung Dae Hong
    • Journal of Internet of Things and Convergence
    • /
    • v.10 no.2
    • /
    • pp.85-91
    • /
    • 2024
  • In this paper, we studied projection mapping, which is being utilized as a digital canvas beyond space and time for theme parks, mega events, and exhibition performances. Since the existing projection technology used for fixed objects has the limitation that it is difficult to map moving objects in terms of utilization, it is urgent to develop a technology that can track and map moving objects and a real-time dynamic projection mapping system based on dynamically moving objects so that it can respond to various markets such as performances, exhibitions, and theme parks. In this paper, we propose a system that can track real-time objects in real time and eliminate the delay phenomenon by developing hardware and performing high-speed image processing. Specifically, we develop a real-time object image analysis and projection focusing control unit, an integrated operating system for a real-time object tracking system, and an image processing library for projection mapping. This research is expected to have a wide range of applications in the technology-intensive industry that utilizes real-time vision machine-based detection technology, as well as in the industry where cutting-edge science and technology are converged and produced.

Enhanced Image Mapping Method for Computer-Generated Integral Imaging System (집적 영상 시스템을 위한 향상된 이미지 매핑 방법)

  • Lee Bin-Na-Ra;Cho Yong-Joo;Park Kyoung-Shin;Min Sung-Wook
    • The KIPS Transactions:PartB
    • /
    • v.13B no.3 s.106
    • /
    • pp.295-300
    • /
    • 2006
  • The integral imaging system is an auto-stereoscopic display that allows users to see 3D images without wearing special glasses. In the integral imaging system, the 3D object information is taken from several view points and stored as elemental images. Then, users can see a 3D reconstructed image by the elemental images displayed through a lens array. The elemental images can be created by computer graphics, which is referred to the computer-generated integral imaging. The process of creating the elemental images is called image mapping. There are some image mapping methods proposed in the past, such as PRR(Point Retracing Rendering), MVR(Multi-Viewpoint Rendering) and PGR(Parallel Group Rendering). However, they have problems with heavy rendering computations or performance barrier as the number of elemental lenses in the lens array increases. Thus, it is difficult to use them in real-time graphics applications, such as virtual reality or real-time, interactive games. In this paper, we propose a new image mapping method named VVR(Viewpoint Vector Rendering) that improves real-time rendering performance. This paper describes the concept of VVR first and the performance comparison of image mapping process with previous methods. Then, it discusses possible directions for the future improvements.

A Real-Time Pattern Recognition for Multifunction Myoelectric Hand Control

  • Chu, Jun-Uk;Moon, In-Hyuk;Mun, Mu-Seong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.842-847
    • /
    • 2005
  • This paper proposes a novel real-time EMG pattern recognition for the control of a multifunction myoelectric hand from four channel EMG signals. To cope with the nonstationary signal property of the EMG, features are extracted by wavelet packet transform. For dimensionality reduction and nonlinear mapping of the features, we also propose a linear-nonlinear feature projection composed of PCA and SOFM. The dimensionality reduction by PCA simplifies the structure of the classifier, and reduces processing time for the pattern recognition. The nonlinear mapping by SOFM transforms the PCA-reduced features to a new feature space with high class separability. Finally a multilayer neural network is employed as the pattern classifier. We implement a real-time control system for a multifunction virtual hand. From experimental results, we show that all processes, including virtual hand control, are completed within 125 msec, and the proposed method is applicable to real-time myoelectric hand control without an operation time delay.

  • PDF

Real-time Polygon Generation and Texture Mapping for Tele-operation using 3D Point Cloud Data (원격 작업을 위한 3 차원 점군 데이터기반의 실시간 폴리곤 생성 및 텍스처 맵핑 기법)

  • Jang, Ga-Ram;Shin, Yong-Deuk;Yoon, Jae-Shik;Park, Jae-Han;Bae, Ji-Hun;Lee, Young-Soo;Baeg, Moon-Hong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.10
    • /
    • pp.928-935
    • /
    • 2013
  • In this paper, real-time polygon generation algorithm of 3D point cloud data and texture mapping for tele-operation is proposed. In a tele-operation, it is essential to provide more highly realistic visual information to a tele-operator. By using 3D point cloud data, the tele-operator can observe the working environment from various view point with a reconstructed 3D environment. However, there are huge empty space in 3D point cloud data, since there is no environmental information among the points. This empty space is not suitable for an environmental information. Therefore, real-time polygon generation algorithm of 3D point cloud data and texture mapping is presented to provide more highly realistic visual information to the tele-operator. The 3D environment reconstructed from the 3D point cloud data with texture mapped polygons is the crucial part of the tele-operation.

A Geometrical Generation Method of the Skirt 3D Models (스커트 3D 모델의 기하학적 생성 방법)

  • 최우혁;최창석;김효숙;강인애
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.27 no.7
    • /
    • pp.770-777
    • /
    • 2003
  • This paper proposes a geometrical method for generating and draping the skirt 3D models. The method constructs a 3D basic skirt model using a truncated elliptical cone and generates the various skirt 3D models by controlling the elliptical cone. The B-Spline approximates the 3D drapes which change variously according to the angles and the textiles of the skirts. The mapping sources consist of the textile textures and the skirt 2D model. The 2D models are obtained by mapping the 3D skirt models to the 2D plane. The mapping sources allow us to map the textiles to the 3D skirts. We make the real skirts for the 6 kinds of angles and textiles. and investigate the data of their drape appearances. The investigated data are applied to the virtual skirts. Appearances of the virtual skirts are similar to those of the real.