• 제목/요약/키워드: Real earthquake records

검색결과 60건 처리시간 0.034초

국내 연안지역의 액상화 재해도 작성기법 개발 (Development of the Method for Liquefaction Hazard Microzonation in Korean Coastal Areas)

  • 곽창원;최재순;강규진;김수일
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2002년도 봄 학술발표회 논문집
    • /
    • pp.431-438
    • /
    • 2002
  • Reclaimed coastal areas for the construction of ports and harbors are in general subjected to strong possibility of liquefaction. In this research, a new method for liquefaction hazard microzonation based on liquefaction settlements was developed. Severity of liquefaction hazard was defined by liquefaction settlements obtained from the method proposed by Tokimatsu and Seed. 10 coastal areas, representing typical geological and geotechnical characteristics of Korean ports and harbors, and 3 real earthquake records for site response analysis were selected. From this research, liquefaction settlement criteria is adapted as a new quantitative index for the liquefaction hazard microzonation. Liquefaction settlements were also compared with LPI (Liquefaction Potential Index), obtained from the assessment of liquefaction potential based on the modified Seed and Idriss's method. As an example, 2 and 3 dimensional liquefaction hazard microzonations of Pusan port and harbor area were mapped by overlapped liquefaction settlement contours.

  • PDF

Seismic base isolation of precast wall system using high damping rubber bearing

  • Tiong, Patrick L.Y.;Adnan, Azlan;Rahman, Ahmad B.A.;Mirasa, Abdul K.
    • Earthquakes and Structures
    • /
    • 제7권6호
    • /
    • pp.1141-1169
    • /
    • 2014
  • This study is aimed to investigate the seismic performance of low-rise precast wall system with base isolation. Three types of High Damping Rubber Bearing (HDRB) were designed to provide effective isolation period of 2.5 s for three different kinds of structure in terms of vertical loading. The real size HDRB was manufactured and tested to obtain the characteristic stiffness as well as damping ratio. In the vertical stiffness test, it was revealed that the HDRB was not an ideal selection to be used in isolating lightweight structure. Time history analysis using 33 real earthquake records classified with respective peak ground acceleration-to-velocity (a/v) ratio was performed for the remaining two types of HDRB with relatively higher vertical loading. HDRB was observed to show significant reduction in terms of base shear and floor acceleration demand in ground excitations having a/v ratio above $0.5g/ms^{-1}$, very much lower than the current classification of $0.8g/ms^{-1}$. In addition, this study also revealed that increasing the damping ratio of base isolation system did not guarantee better seismic performance particularly in isolation of lightweight structure or when the ground excitation was having lower a/v ratio.

Design response spectra-compliant real and synthetic GMS for seismic analysis of seismically isolated nuclear reactor containment building

  • Ali, Ahmer;Abu-Hayah, Nadin;Kim, Dookie;Cho, Sung Gook
    • Nuclear Engineering and Technology
    • /
    • 제49권4호
    • /
    • pp.825-837
    • /
    • 2017
  • Due to the severe impacts of recent earthquakes, the use of seismic isolation is paramount for the safety of nuclear structures. The diversity observed in seismic events demands ongoing research to analyze the devastating attributes involved, and hence to enhance the sustainability of base-isolated nuclear power plants. This study reports the seismic performance of a seismically-isolated nuclear reactor containment building (NRCB) under strong short-period ground motions (SPGMs) and long-period ground motions (LPGMs). The United States Nuclear Regulatory Commission-based design response spectrum for the seismic design of nuclear power plants is stipulated as the reference spectrum for ground motion selection. Within the period range(s) of interest, the spectral matching of selected records with the target spectrum is ensured using the spectral-compatibility approach. NRC-compliant SPGMs and LPGMs from the mega-thrust Tohoku earthquake are used to obtain the structural response of the base-isolated NRCB. To account for the lack of earthquakes in low-to-moderate seismicity zones and the gap in the artificial synthesis of long-period records, wavelet-decomposition based autoregressive moving average modeling for artificial generation of real ground motions is performed. Based on analysis results from real and simulated SPGMs versus LPGMs, the performance of NRCBs is discussed with suggestions for future research and seismic provisions.

Evaluation of rigid-end offset effect on seismic behavior of a structure subjected to Van earthquake

  • Bekiroglu, Serkan;Sahina, Abdurrahman;Sevima, Baris;Ayvaz, Yusuf
    • Structural Engineering and Mechanics
    • /
    • 제47권6호
    • /
    • pp.857-879
    • /
    • 2013
  • Numerical damage assessment of Van train station building consisting of three RC blocks due to 2011 Van Earthquakes by nonlinear dynamic analysis is presented. The structural model is created with rigid-end offsets and plastic hinges for nonlinear analysis. Rigid-end offsets are considered for connection areas and proposed for wall-supported elements. In wall-supported elements, walls take place in a limited part of the columns. Nonlinear dynamic analysis of the building with and without rigid-end offsets is performed by using real earthquake records and results are compared. The results show that rigid-end offsets have significant effects on the seismic behavior of the structures.

Effect of model calibration on seismic behaviour of a historical mosque

  • Demir, Ali;Nohutcu, Halil;Ercan, Emre;Hokelekli, Emin;Altintas, Gokhan
    • Structural Engineering and Mechanics
    • /
    • 제60권5호
    • /
    • pp.749-760
    • /
    • 2016
  • The objective of the study is to investigate the effects of model calibration on seismic behaviour of a historical mosque which is one of the most significant Ottomon structures. Seismic analyses of calibrated and noncalibrated numeric models were carried out by using acceleration records of Kocaeli earthquake in 1999. In numerical analysis, existing crack zones on real structure was investigated in detail. As a result of analyses, maximum stresses and displacements of calibrated and noncalibrated numerical models were compared each other. Consequently, seismic behaviour and damage state of historical masonry Hafsa Sultan mosque was determined as more realistic in the event of a severe earthquake.

Evaluation of combination rules for multi-story buildings with asymmetric set-backs

  • Aksoylu, M. Gunhan;Durgun, Yavuz;Darilmaz, Kutlu
    • Earthquakes and Structures
    • /
    • 제11권1호
    • /
    • pp.179-193
    • /
    • 2016
  • The effectiveness of 100/30, 100/40 and SRSS directional combination rules on the response of asymmetric setback buildings is examined. Because of the irregularity in setback buildings, the maximum seismic response would be correlative with the direction of earthquake. To verify the directional combination rules of mode superposition methods, the time history analyses of setback buildings to real earthquake records are carried out. Example analyses have been used to compare the validty and accuracy of SRSS and percentage methods for frame and dual frame-wall systems.

지진 시나리오 기반 하천 제방의 거동 변화 분석 (Analysis of behavior a River Levee based on the Earthquake Scenario)

  • 김진만;진윤화;한희수
    • 한국산학기술학회논문지
    • /
    • 제21권3호
    • /
    • pp.481-487
    • /
    • 2020
  • 하천 제방의 경우 내진설계 제외 시설로 지정되어 있다. 하지만 지진으로 인해 하천 제방이 붕괴될 경우 경제적 손실과 인명 피해는 필연적으로 발생하게 된다. 따라서 본 연구에서는 지진 시 하천 제방의 거동 변화 분석을 수치해석적으로 검토하였다. 기존 연구들과 달리 실지진파를 이용한 동해석을 수행하였으며, 지진 발생 전/후 하천 제방의 거동을 정량적으로 비교하고 분석하였다. 연구결과, 제방의 활동 안전율은 지진 발생전 대비 약 28.5% 감소되었지만, 최소 기준 안전율은 만족하는 것으로 나타났다. 하지만 지진으로 인해 발생한 과잉간극수압으로 연직유효응력은 81.8% 감소하였고, 기초지반 대부분이 액상화 현상이 발생하는 것으로 나타났다. 지진으로 인한 응력-변위 거동 검토 결과, 제내지 측성토층에서 큰 침하가 발생하는 것으로 나타났으며 기초지반 대부분이 항복하는 것으로 나타나 검토 대상 하천 제방은 지진에 상당히 취약한 것으로 판단된다. 본 연구 결과를 토대로 하천 제방에 대한 내진설계 기준 재정립의 필요성이 확보되었으며, 개략적인 피해영역과 지진취약구간을 예측할 수 있는 기초자료로써의 활용이 가능할 것으로 판단된다.

Seismic performance of RC buildings subjected to past earthquakes in Turkey

  • Inel, Mehmet;Meral, Emrah
    • Earthquakes and Structures
    • /
    • 제11권3호
    • /
    • pp.483-503
    • /
    • 2016
  • This study aims to evaluate seismic performance of existing low and mid-rise reinforced concrete buildings by comparing their displacement capacities and displacement demands under selected ground motions experienced in Turkey as well as demand spectrum provided in 2007 Turkish Earthquake Code for design earthquake with 10% probability of exceedance in 50 years for soil class Z3. It should be noted that typical residential buildings are designed according to demand spectrum of 10% probability of exceedance in 50 years. Three RC building sets as 2-, 4- and 7-story, are selected to represent reference low-and mid-rise buildings located in the high seismicity region of Turkey. The selected buildings are typical beam-column RC frame buildings with no shear walls. The outcomes of detailed field and archive investigation including approximately 500 real residential RC buildings established building models to reflect existing building stock. Total of 72 3-D building models are constructed from the reference buildings to include the effects of some properties such as structural irregularities, concrete strength, seismic codes, structural deficiencies, transverse reinforcement detailing, and number of story on seismic performance of low and mid-rise RC buildings. Capacity curves of building sets are obtained by nonlinear static analyses conducted in two principal directions, resulting in 144 models. The inelastic dynamic characteristics are represented by "equivalent" Single-Degree-of- Freedom (ESDOF) systems using obtained capacity curves of buildings. Nonlinear time history analysis is used to estimate displacement demands of representative building models idealized with (ESDOF) systems subjected to the selected ground motion records from past earthquakes in Turkey. The results show that the significant number of pre-modern code 4- and 7-story buildings exceeds LS performance level while the modern code 4- and 7-story buildings have better performances. The findings obviously indicate the existence of destructive earthquakes especially for 4- and 7-story buildings. Significant improvements in the performance of the buildings per modern code are also obvious in the study. Almost one third of pre-modern code buildings is exceeding LS level during records in the past earthquakes. This observation also supports the building damages experienced in the past earthquake events in Turkey.

Application of robust fuzzy sliding-mode controller with fuzzy moving sliding surfaces for earthquake-excited structures

  • Alli, Hasan;Yakut, Oguz
    • Structural Engineering and Mechanics
    • /
    • 제26권5호
    • /
    • pp.517-544
    • /
    • 2007
  • This study shows a fuzzy tuning scheme to fuzzy sliding mode controller (FSMC) for seismic isolation of earthquake-excited structures. The sliding surface can rotate in the phase plane in such a direction that the seismic isolation can be improved. Since ideal sliding mode control requires very fast switch on the input, which can not be provided by real actuators, some modifications to the conventional sliding-mode controller have been proposed based on fuzzy logic. A superior control performance has been obtained with FSMC to deal with problems of uncertainty, imprecision and time delay. Furthermore, using the fuzzy moving sliding surface, the excellent system response is obtained if comparing with the conventional sliding mode controller (SMC), as well as reducing chattering effect. For simulation validation of the proposed seismic response control, 16-floor tall building has been considered. Simulations for six different seismic events, Elcentro (1940), Hyogoken (1995), Northridge (1994), Takochi-oki (1968), the east-west acceleration component of D$\ddot{u}$zce and Bolu records of 1999 D$\ddot{u}$zce-Bolu earthquake in Turkey, have been performed for assessing the effectiveness of the proposed control approach. Then, the simulations have been presented with figures and tables. As a result, the performance of the proposed controller has been quite remarkable, compared with that of conventional SMC.

공동구의 응답변위법 해석 시 국내 특성을 반영한 지반 비선형 보정계수 연구 (A Study on the Correction Factors of Soil Non-linearity Considering Korean Regional Conditions for Seismic Deformation Method Applied to Multi-Utility Tunnels)

  • 최정호;윤종석;추연욱;윤준웅
    • 한국지진공학회논문집
    • /
    • 제25권1호
    • /
    • pp.11-20
    • /
    • 2021
  • The seismic deformation method is conventionally used as a seismic design for a multi-utility tunnel in Korea. In the seismic deformation method, the soil ground's natural period is one of the most critical factors for calculating the ground displacement using cosine functions. Correction factors for the natural period and shear wave velocity have been used to consider the non-linearity of dynamic soil properties. However, the correction factors have been issued because the correction factors have not been sufficiently studied to consider Korea's regional conditions. This paper aims to evaluate the natural periods for the seismic deformation method considering Korea's ground conditions. Ground response analysis was performed using seven real earthquake records on twelve sites with different soil conditions where actual multi-utility tunnels are installed. As a result, natural periods of the sites were analyzed and new correction factors were proposed according to seismic performance and Korea's regional conditions.