• 제목/요약/키워드: Real driving fuel economy

검색결과 26건 처리시간 0.02초

실도로 주행을 반영한 자동차 온실가스 배출 특성 연구 (The Study on Characteristic of Vehicle Greenhouse Gas Emission Applying Real Road Driving)

  • 이정기;용기중;김자륭;엄성복
    • 자동차안전학회지
    • /
    • 제10권3호
    • /
    • pp.45-54
    • /
    • 2018
  • Greenhouse gas is the big issue of the whole world. So foreign countries, EU, USA, Japan, China and Korea made the policy for reducing greenhouse gas. For calculation of reduction, it is necessary to know the quantity of current greenhouse emission per year in Korea. It is not reflected real driving condition for measuring the Fuel economy and greenhouse gas. The subject of this study is to figure out the characteristics which influence on greenhouse gas in real driving condition. And final goal is applying the policy greenhouse emission reduction.

연료분사정보 표시장치를 통한 자동차 연비향상 효과에 대한 실험적 연구 (A Study on Reduction of Fuel Consumption by Displaying Fuel Injection Data for Drivers)

  • 고광호
    • 한국자동차공학회논문집
    • /
    • 제18권4호
    • /
    • pp.115-120
    • /
    • 2010
  • The reduction rate of fuel consumption by showing the fuel injection data for driver was measured in this study. The fuel injection data are composed of injection period, real time fuel economy and average fuel economy. The fuel consumption was measured by processing the voltage signal of injector and driven distance by GPS sensor. The fuel consumption was reduced by driving more carefully, i.e driving more steady without sudden acceleration and deceleration watching these fuel injection data. The reduction rate was up to 37% and the rate increased as the driver is customed to this driving pattern.

다양한 운전조건에 따른 하이브리드 자동차의 연비 특성 연구 (The study for fuel economy characteristics of hybrid electric vehicle (HEV) according to the driving condition)

  • 이민호;김성우;김정환;김기호;정충섭;노경완;장광식
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2011년도 추계학술대회 초록집
    • /
    • pp.104-104
    • /
    • 2011
  • The fuel economy estimates essentially serve two purposes : to provide consumers with a basis on which to compare the fuel economy of different vehicles, and to provide consumers with a reasonable estimate of the range of fuel economy they can expect to achieve. The current fuel economy label values utilize measured fuel economy over city driving cycles. However, this test driving mode can not be evaluated the variety factor of the real-world. These factors include differences between the way vehicles are driven on the road and over the test cycles, air conditioning use, widely varying ambient temperature and humidity, widely varying trip lengths, wind, precipitation, rough road conditions, hills, etc. The purpose of this paper is to account for three of these factors on the fuel economy : 1) on-road driving patterns (i.e. higher speeds and more aggressive driving (higher acceleration rates)), 2) air conditioning, and 3) colder temperatures. The new test methods will bring into the fuel economy estimates the test results from the five emissions tests in place today : CVS-75, HWFET, US06, SC03 and Cold CVS-75. Based on these new test methods, this paper discusses the characteristics of driving condition on Hybrid electric vehicle (HEV). And this paper assesses the fuel economy label of HEV.

  • PDF

상용차 탑재 대형엔진의 차량연비 개선 연구(II) (A Study for the Fuel Economy Improvement of a Heavy Duty Engine in Commercial Vehicles(II))

  • 류명석;두병만;구영곤
    • 한국자동차공학회논문집
    • /
    • 제16권6호
    • /
    • pp.104-108
    • /
    • 2008
  • Recently, studies conducted by our research group, revealed the possibility for reducing BSFC, NOx and PM emissions to meet the Euro 4 & 5 legislations. The main objective of the present study is to get better fuel economy in commercial vehicles by considering real driving conditions. Firstly, in order to improve fuel economy on fields, specifically it is required to analyze the driving pattern and make the representative modes from real field data. Secondly, it is performed to make the engine dynometer test to optimize the fuel consumption by reflecting on the representative driving modes, based on the Korea 2008 emission legislation equal to the Euro 4. The engine components such as engine calibration, combustion chamber, turbocharger and ancilliaries were modified to optimize vehicle fuel economy over a typical customer drive cycle whilst still meeting the exhaust emission restrictions. Finally, these results were confirmed by field testing of vehicle equipped with the updated calibration engine. It was placed the two vehicles together traveling the same route and accomplishing the same amount of stops(back to back), in order to evaluate the fuel consumption in comparison to the current vehicle. Through several repeats such as the engine calibration and field test, we could get 3 % to 7.7 % vehicle fuel economy improvements compared to previous vehicle.

CVS-75 모드 시험과 실도로 주행 시험을 통한 배출가스 및 연비 성능 평가 (Fuel Economy and Emission Characteristics Evaluation by CVS-75 Mode Test and RDE(Real-road Driving Emissions) Test)

  • 강은정;엄준식;서영호
    • 융복합기술연구소 논문집
    • /
    • 제4권2호
    • /
    • pp.67-70
    • /
    • 2014
  • Recently EU has been recognized that there is a difference of emission quantity between emission certification test mode and real-road driving test. Accordingly the European Commission is currently preparing to require real-road testing as part of the passenger car type-approval process in the EU. vehicle manufacturers from 2017 are expected to test new vehicles not only under laboratory conditions but also on the real-road, using PEMS equipment. Therefore the purpose of this study is to analyze the emission and Fuel Economy of CVS-75 mode test using chassis dynamometer and RDE test using PEMS equipment by PHEV passenger car.

상용차 탑재 대형엔진의 차량연비 개선 연구(I) (A Study of the Fuel Economy Improvement of a Heavy Duty in Commercial Vehicle(I))

  • 류명석;두병만;구영곤
    • 한국자동차공학회논문집
    • /
    • 제16권5호
    • /
    • pp.44-48
    • /
    • 2008
  • This paper describes on studies of the heavy duty engine calibration for better fuel economy based on real driving conditions. Using testbed validated software simulation of the engine and turbocharger system, an alternative turbocharger specification, with potential to improve fuel economy was identified. Secondly, the engine calibration was modified to optimize vehicle fuel economy over a typical customer drive cycle whilst still meeting the steady-state (testbed) emissions legislation. These results were confirmed by field testing of a vehicle equipped with the updated specifications. This study found good agreements between the prediction and the field test on the vehicle fuel economy improvements of the express bus with updated calibration and turbocharger.

GPS 고도 데이터를 이용한 경사가 있는 고속국도에서 에코드라이빙 방안 (Eco-driving Method at Highway including Grade using GPS Altitude data)

  • 최성철
    • 한국산학기술학회논문지
    • /
    • 제12권1호
    • /
    • pp.19-25
    • /
    • 2011
  • 최근의 차량 연비는 환경 규제 및 고가의 연료 가격으로 인하여 중요한 문제로 대두되었다. 연비 향상을 위한 기술 개발은 엔진, 파워트레인 등 차량의 많은 구성품들의 성능을 개선하였다. 따라서 연비는 많이 향상 되었으나 연비 측정은 현재도 주어진 모드(LA-4, FTP-75 등)에서 컴퓨터 모의시험 및 다이나모에서 수행한다. 본 논문에서는 실제 도로의 연비 향상 방안을 도출하기 위하여 약 213Km 영동고속도로를 제안하는 3가지 다른 알고리즘으로 모의 주행하였다. 이를 위해 GPS 수신 데이터 중에서 거리와 고도 데이터를 추출하여 각 구간의 경사도, 주행저항을 계산, 알고리즘에 따른 속도 프로파일을 약 213Km 전 구간에 대해서 완성하였다. 이 속도 프로파일로 컴퓨터를 이용한 AVL Cruise 프로그램으로 모의 주행하여 연비를 산출하고 Eco-driving 방안을 제안한다.

준중형급 전기자동차의 주행특성에 따른 에너지 소모량 분석 (The Analysis of Energy Consumption for an Electric Vehicle under Various Driving Circumstance)

  • 이대흥;서호원;정종렬;박영일;차석원
    • 한국자동차공학회논문집
    • /
    • 제20권2호
    • /
    • pp.38-46
    • /
    • 2012
  • This paper discusses the energy consumption for a mid-size electric vehicle(EV) under various conditions. In order to analyze which driving style is more efficient in terms of the system of the EV, we develop the electric vehicle model and apply several types of speed profiles such as different steady speeds, acceleration/deceleration, and a real world driving cycle including the elevation profile obtained from a GPS device. The results show that the energy consumption of the EV is affected by the operating efficiency of components when driving at low speed, while it depends on required power at wheels when driving at high speed. Also this paper investigates the effect of the elevation of a road and the rate of electrical braking on the energy consumption as well as the fuel economy of a conventional vehicle model under the same conditions.

경유자동차의 실험실과 실도로 주행시험에 관한 비교 분석 (An analysis of Laboratory and Real Driving Test using Diesel Vehicles)

  • 이광범;용부중
    • 자동차안전학회지
    • /
    • 제12권1호
    • /
    • pp.33-38
    • /
    • 2020
  • Since a diesel vehicle scandal related to the 'A' automobile company was issued in the United States in 2015, many countries have been interested in emission defeat devices. Being embedded in some diesel passenger cars sold in Korea, a defeat device for exhaust gas may have influence on both fuel economy and NOx emissions. In order to examine such effects, we carried out laboratory indoor tests as well as real road driving tests using four models of 'A' automobile company which may employ defeat devices. Those tests were performed observing the test modes of FTP-75, HWFET, and NEDC. Although fuel economy and NOx emissions according to indoor tests comply with the suggested tolerance, the findings in the real road driving tests do not satisfy the tolerance. Along with the results provided in this study, further evaluation may be necessary to investigate the noticeable difference between the indoor and real road tests.

운전조건이 하이브리드 자동차의 연비에 미치는 영향 연구 (The Influence of Operating Conditions on Fuel Economy of the Hybrid Electric Vehicle)

  • 이영재;김강출;표영덕
    • 한국자동차공학회논문집
    • /
    • 제13권3호
    • /
    • pp.35-40
    • /
    • 2005
  • In the present study, the influence of operating conditions on fuel economy for hybrid electric vehicle was analyzed. In order to accomplish this, vehicle speed, engine speed, battery current and voltage, SOC (state of charge),motor speed and torque, generator speed and torque, engine coolant temperature etc. were measured in real time. The tests were carried out under different driving cycles which are urban and highway cycles, KOREA CITY cycle and on-road driving, and also under various operating conditions such as different initial SOC, with or without regenerative braking etc.. Generally, conventional gasoline engines show a poor fuel economy at stop and go driving, because braking energy is wasted and the engine is operated in low thermal efficiency regions. However, in case of hybrid vehicles, higher fuel economy can be obtained because of utilizing the maximum thermal efficiency regions of engine, idling stop of engine, and regenerative braking etc..