• 제목/요약/키워드: Real Time Framework

검색결과 699건 처리시간 0.027초

MapReduce 환경에서의 실시간 LBS를 위한 이동궤적 데이터 색인 및 검색 시스템 설계 (Design of Trajectory Data Indexing and Query Processing for Real-Time LBS in MapReduce Environments)

  • 정재화
    • 디지털콘텐츠학회 논문지
    • /
    • 제14권3호
    • /
    • pp.313-321
    • /
    • 2013
  • 최근 모바일 스마트 기기의 보급으로 스마트 기기에 탑재된 다양한 센서에서 수집되는 대량이 데이터를 분석하여 처리하는 빅 데이터의 시대는 위치기반 서비스(LBSs: Location-Based Services)에 까지 확대대고 있다. 이동궤적에 대한 데이터도 초 대용량으로 증가하고 있다. 초 대용량 이동궤적 데이터 처리를 위해서는 클라우드 컴퓨팅 기술 및 맵리듀스와 같은 병행처리 플랫폼에 대한 연구가 필요하다. 최근 대용량 데이터의 병렬처리를 위해 맵리듀스 기반의 연구는 진행되고 있으나, 일괄처리 및 키-값 데이터 구조에 적합한 맵리듀스는 실시간 LBS에 적용에 적합하지 않다. 따라서 본 연구는 맵리듀스 특성을 면밀히 분석하고 실시간적 서비스에 적합하도록 모듈 단위로 효율적인 색인 기법 및 검색에 대한 시스템 설계를 제시한다.

A Random Deflected Subgradient Algorithm for Energy-Efficient Real-time Multicast in Wireless Networks

  • Tan, Guoping;Liu, Jianjun;Li, Yueheng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제10권10호
    • /
    • pp.4864-4882
    • /
    • 2016
  • In this work, we consider the optimization problem of minimizing energy consumption for real-time multicast over wireless multi-hop networks. Previously, a distributed primal-dual subgradient algorithm was used for finding a solution to the optimization problem. However, the traditional subgradient algorithms have drawbacks in terms of i) sensitivity to iteration parameters; ii) need for saving previous iteration results for computing the optimization results at the current iteration. To overcome these drawbacks, using a joint network coding and scheduling optimization framework, we propose a novel distributed primal-dual Random Deflected Subgradient (RDS) algorithm for solving the optimization problem. Furthermore, we derive the corresponding recursive formulas for the proposed RDS algorithm, which are useful for practical applications. In comparison with the traditional subgradient algorithms, the illustrated performance results show that the proposed RDS algorithm can achieve an improved optimal solution. Moreover, the proposed algorithm is stable and robust against the choice of parameter values used in the algorithm.

Real-time geometry identification of moving ships by computer vision techniques in bridge area

  • Li, Shunlong;Guo, Yapeng;Xu, Yang;Li, Zhonglong
    • Smart Structures and Systems
    • /
    • 제23권4호
    • /
    • pp.359-371
    • /
    • 2019
  • As part of a structural health monitoring system, the relative geometric relationship between a ship and bridge has been recognized as important for bridge authorities and ship owners to avoid ship-bridge collision. This study proposes a novel computer vision method for the real-time geometric parameter identification of moving ships based on a single shot multibox detector (SSD) by using transfer learning techniques and monocular vision. The identification framework consists of ship detection (coarse scale) and geometric parameter calculation (fine scale) modules. For the ship detection, the SSD, which is a deep learning algorithm, was employed and fine-tuned by ship image samples downloaded from the Internet to obtain the rectangle regions of interest in the coarse scale. Subsequently, for the geometric parameter calculation, an accurate ship contour is created using morphological operations within the saturation channel in hue, saturation, and value color space. Furthermore, a local coordinate system was constructed using projective geometry transformation to calculate the geometric parameters of ships, such as width, length, height, localization, and velocity. The application of the proposed method to in situ video images, obtained from cameras set on the girder of the Wuhan Yangtze River Bridge above the shipping channel, confirmed the efficiency, accuracy, and effectiveness of the proposed method.

AI-BASED Monitoring Of New Plant Growth Management System Design

  • Seung-Ho Lee;Seung-Jung Shin
    • International journal of advanced smart convergence
    • /
    • 제12권3호
    • /
    • pp.104-108
    • /
    • 2023
  • This paper deals with research on innovative systems using Python-based artificial intelligence technology in the field of plant growth monitoring. The importance of monitoring and analyzing the health status and growth environment of plants in real time contributes to improving the efficiency and quality of crop production. This paper proposes a method of processing and analyzing plant image data using computer vision and deep learning technologies. The system was implemented using Python language and the main deep learning framework, TensorFlow, PyTorch. A camera system that monitors plants in real time acquires image data and provides it as input to a deep neural network model. This model was used to determine the growth state of plants, the presence of pests, and nutritional status. The proposed system provides users with information on plant state changes in real time by providing monitoring results in the form of visual or notification. In addition, it is also used to predict future growth conditions or anomalies by building data analysis and prediction models based on the collected data. This paper is about the design and implementation of Python-based plant growth monitoring systems, data processing and analysis methods, and is expected to contribute to important research areas for improving plant production efficiency and reducing resource consumption.

A REAL-TIME PMIS BASED INDUSTRIAL CONSTRUCTION PROJECT MANAGEMENT SYSTEM

  • Kyusung Lee;Hojeong Song;Jaehyun Choi
    • 국제학술발표논문집
    • /
    • The 5th International Conference on Construction Engineering and Project Management
    • /
    • pp.352-358
    • /
    • 2013
  • As amount of information in construction industry is growing, the role of information system in project management is becoming increasingly important. With the emerging IT application to the advancing construction industry, construction project management system with advanced technology has been progressed vigorously to improve construction productivity and management efficiency. Recently, a web-based Project Management Information System (PMIS) is developed to support decision-making process by efficiently managing project related information generated from various discipline. Many firms are in the process of developing the PMIS system or already have been applied the system to various projects. However, PMIS is still in its early stage of development to be applied at industrial plant construction projects that process management is significantly emphasized for the successful execution of the project. With the complexity of the industrial plant projects, the industry practitioners need to be able to visualize the construction schedule information to manage the project efficiently. This study suggests methodologies for improving PMIS specialized for industrial plant piping construction projects to estimate the baseline schedule and performance measurement more accurately by developing a framework for the piping construction projects. By using this developed system, the researchers expect that piping construction projects will be more efficiently managed on a real-time basis through measuring progress of piping at each and every state of progress milestone and provide management with opportunities to forecast the level of efforts required to execute the remaining work scope in a timely manner

  • PDF

Black Ice Detection Platform and Its Evaluation using Jetson Nano Devices based on Convolutional Neural Network (CNN)

  • Sun-Kyoung KANG;Yeonwoo LEE
    • 한국인공지능학회지
    • /
    • 제11권4호
    • /
    • pp.1-8
    • /
    • 2023
  • In this paper, we propose a black ice detection platform framework using Convolutional Neural Networks (CNNs). To overcome black ice problem, we introduce a real-time based early warning platform using CNN-based architecture, and furthermore, in order to enhance the accuracy of black ice detection, we apply a multi-scale dilation convolution feature fusion (MsDC-FF) technique. Then, we establish a specialized experimental platform by using a comprehensive dataset of thermal road black ice images for a training and evaluation purpose. Experimental results of a real-time black ice detection platform show the better performance of our proposed network model compared to conventional image segmentation models. Our proposed platform have achieved real-time segmentation of road black ice areas by deploying a road black ice area segmentation network on the edge device Jetson Nano devices. This approach in parallel using multi-scale dilated convolutions with different dilation rates had faster segmentation speeds due to its smaller model parameters. The proposed MsCD-FF Net(2) model had the fastest segmentation speed at 5.53 frame per second (FPS). Thereby encouraging safe driving for motorists and providing decision support for road surface management in the road traffic monitoring department.

An Open Standard-based Terrain Tile Production Chain for Geo-referenced Simulation

  • Yoo, Byoung-Hyun
    • 대한원격탐사학회지
    • /
    • 제24권5호
    • /
    • pp.497-506
    • /
    • 2008
  • The needs for digital models of real environment such as 3D terrain or cyber city model are increasing. Most of applications related with modeling and simulation require virtual environment constructed from geospatial information of real world in order to guarantee reliability and accuracy of the simulation. The most fundamental data for building virtual environment, terrain elevation and orthogonal imagery is acquired from optical sensor of satellite or airplane. Providing interoperable and reusable digital model is important to promote practical application of high-resolution satellite imagery. This paper presents the new research regarding representation of geospatial information, especially for 3D shape and appearance of virtual terrain. and describe framework for constructing real-time 3D model of large terrain based on high-resolution satellite imagery. It provides infrastructure of 3D simulation with geographical context. Web architecture, XML language and open protocols to build a standard based 3D terrain are presented. Details of standard-based approach for providing infrastructure of real-time 3D simulation using high-resolution satellite imagery are also presented. This work would facilitate interchange and interoperability across diverse systems and be usable by governments, industry scientists and general public.

Optimal Control Of Two-Hop Routing In Dtns With Time-Varying Selfish Behavior

  • Wu, Yahui;Deng, Su;Huang, Hongbin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제6권9호
    • /
    • pp.2202-2217
    • /
    • 2012
  • The transmission opportunities between nodes in Delay Tolerant Network (DTNs) are uncertain, and routing algorithms in DTNs often need nodes serving as relays for others to carry and forward messages. Due to selfishness, nodes may ask the source to pay a certain reward, and the reward may be varying with time. Moreover, the reward that the source obtains from the destination may also be varying with time. For example, the sooner the destination gets the message, the more rewards the source may obtain. The goal of this paper is to explore efficient ways for the source to maximize its total reward in such complex applications when it uses the probabilistic two-hop routing policy. We first propose a theoretical framework, which can be used to evaluate the total reward that the source can obtain. Then based on the model, we prove that the optimal forwarding policy confirms to the threshold form by the Pontryagin's Maximum Principle. Simulations based on both synthetic and real motion traces show the accuracy of our theoretical framework. Furthermore, we demonstrate that the performance of the optimal forwarding policy with threshold form is better through extensive numerical results, which conforms to the result obtained by the Maximum Principle.

실시간 온라인 금융솔루션 수출을 위한 지급결제프레임워크 (Payment Settlement Framework for Exporting Real-Time Online Financial Solution)

  • 배현기;안윤지;박광호
    • 산업경영시스템학회지
    • /
    • 제40권4호
    • /
    • pp.55-66
    • /
    • 2017
  • Korean small and medium sized software companies have tried to export their solutions or services to overseas markets. In 2016, exports of the software industry increased by 6.0% from the previous year, and the value added of the industry was 2.2 times higher than that of the manufacturing industry. From a long-term perspective, it is important to secure a global competitive advantage in order to sustain the export high value-added of the software industry. The obstacles to entry into the overseas market of small to medium enterprises are as follows: first, difficulty in product development and localization of marketing; second, lack of investment for overseas expansion; and finally, competitiveness of software technology. In particular, To overcome such obstacles, Korean small and medium sized software companies should increase the technical perfection and secure software export competitiveness. The paper presents a payment settlement framework enabling adaptive reuse and semiautomatic development of global payment settlement services. The quantitative and qualitative evaluation results are presented with domestic and overseas case studies as follows: Firstly, semi-automatic development is realized successfully by applying the framework. Secondly, it is possible to maintain consistent quality of software and to deliver maintenance services without relying on the internal human resources. Thirdly, it is possible to reduce the project duration of the same development cope to less than 50% by applying the framework. Finally, because it is based on BPMN 2.0, which is a high level design diagram, it is expected that it will be easy to implement through components connection and reduce difficulties in technology transfer and localization. Also, at the time of runtime operation, it will be effective to understand the design idea easily and to carry out additional developments without human resource who participated in the initial project.

실용적인 시스템을 위한 안전한 소프트웨어 컴포넌트 조합 (Secure Component Composition for Practical Systems)

  • 이은영
    • 정보보호학회논문지
    • /
    • 제16권4호
    • /
    • pp.43-57
    • /
    • 2006
  • 소프트웨어 컴포넌트를 이용하여 시스템을 구성하는 경우 그리 간단하지 않은데, 그것은 링크 과정 자체가 서로 다른 버전들과 디지털 서명, 정적인 타입 정보나 네트워크로 전송된 소프트웨어, 그리고 서로 다른 판매자에 의한 컴포넌트들을 모두 포함하는 복잡한 과정이기 때문이다. 만약 링크과정에 적용될 수 있는 링크 정책을 수립하고 이를 링크 시에 적용할 수 있는 방법이 있다면 이러한 복잡함을 해결하는 좋은 수단이 된다. 시큐어 링킹(Secure Linking)은 사용자가 안전한 링크를 위한 정책을 만들고 이를 링크 시에 적용할 수 있도록 해주는 새로운 링크 프로토콜이며, 시큐어 링크 프레임워크(Secure Linking Framework)는 시큐어 링크 시스템 구현을 위한 논리적 프레임워크이다. 본 논문에서는 시큐어 링크 프레임워크를 이용하여 마이크로 소프트의 닷넷(.NET)에서 사용되는 어셈블리의 링크 과정을 설명함으로써 시큐어 링킹이 실제로 사용되는 링크 시스템을 나타낼 수 있을 만큼 풍부한 표현력과 실용성을 가지고 있음을 증명한다. 또한 이 과정에서 나타난 어셈블리 코드 서명의 문제점에 대한 논의를 통해서 논리에 기반을 둔 링크 프레임워크가 가지는 장점을 보이고자 한다.