• Title/Summary/Keyword: Real Maintenance Efforts

Search Result 16, Processing Time 0.021 seconds

Using artificial intelligence to detect human errors in nuclear power plants: A case in operation and maintenance

  • Ezgi Gursel ;Bhavya Reddy ;Anahita Khojandi;Mahboubeh Madadi;Jamie Baalis Coble;Vivek Agarwal ;Vaibhav Yadav;Ronald L. Boring
    • Nuclear Engineering and Technology
    • /
    • v.55 no.2
    • /
    • pp.603-622
    • /
    • 2023
  • Human error (HE) is an important concern in safety-critical systems such as nuclear power plants (NPPs). HE has played a role in many accidents and outage incidents in NPPs. Despite the increased automation in NPPs, HE remains unavoidable. Hence, the need for HE detection is as important as HE prevention efforts. In NPPs, HE is rather rare. Hence, anomaly detection, a widely used machine learning technique for detecting rare anomalous instances, can be repurposed to detect potential HE. In this study, we develop an unsupervised anomaly detection technique based on generative adversarial networks (GANs) to detect anomalies in manually collected surveillance data in NPPs. More specifically, our GAN is trained to detect mismatches between automatically recorded sensor data and manually collected surveillance data, and hence, identify anomalous instances that can be attributed to HE. We test our GAN on both a real-world dataset and an external dataset obtained from a testbed, and we benchmark our results against state-of-the-art unsupervised anomaly detection algorithms, including one-class support vector machine and isolation forest. Our results show that the proposed GAN provides improved anomaly detection performance. Our study is promising for the future development of artificial intelligence based HE detection systems.

Defect Monitoring of a Wind Turbine Blade Surface by using Surface Wave Damping (표면파 기반의 풍력발전기 블레이드 표면상태 실시간 모니터링에 관한 연구)

  • Kim, Kyung-Hwan;Yang, Young-Jin;Kim, Hyun-Bum;Yang, Hyung-Chan;Lim, Jong-Hwan;Choi, Kyung-Hyun
    • Clean Technology
    • /
    • v.23 no.1
    • /
    • pp.90-94
    • /
    • 2017
  • These days much efforts are being dedicated to wind power as a potential source of renewable energy. To maintain effective and uniform generation of energy, defect preservation of turbine blade is essential because it directly takes effects on the efficiency of power generation. For the effective maintenance, early measurements of blade defects are very important. However, current technologies such as ultrasonic waves and thermal imaging inspection methods are not suitable because of long inspection time and non-real time inspection. To supplement the problems, the study introduced a method for real time defect monitoring of a blade surface based on surface wave technology. We examined the effect of various parameters such as micro-cracks and peelings on the propagation of surface wave.

Development of Real Time Simulation Environment Based on DEVS Formalism Applicable to Avionics System Integration Laboratory (항공용 SIL에 적용 가능한 DEVS 형식론 기반의 시뮬레이션 환경 개발)

  • Seo, Min-gi;Shin, Ju-chul;Baek, Gyong-hoon;Kim, Seong-woo
    • Journal of Advanced Navigation Technology
    • /
    • v.23 no.5
    • /
    • pp.345-351
    • /
    • 2019
  • Avionics System Integration Laboratory is an integrated test environment for the integration and the verification of avionics systems. Recently, in order to fully consider the requirements verification of avionics system from the aspect of the entire system integration, the participation in the development of the SIL field is advanced from the requirement analysis of the aircraft. Efforts are being made to minimize the cost and the period of development of a SIL so that it does not affect the overall schedule of the aircraft development. We propose the avionics simulation model framework (ASMF) based on the modeling formalism applicable to SIL in order to reduce development period/cost and increase maintenance by standardizing the modeling methods of SIL.

Advanced Work Packaging (AWP) in Practice: Variables for Theory and Implementation

  • Jung, Youngsoo;Jeong, Yeheun;Lee, Yunsub;Kang, Seunghee;Shin, Younghwan;Kim, Youngtae
    • International conference on construction engineering and project management
    • /
    • 2020.12a
    • /
    • pp.201-206
    • /
    • 2020
  • Diversification of project delivery methods (PDM) under ever-changing construction business environment has significantly changed the role of project participants. Active efforts to effectively sharing the roles and responsibilities have been observed in the project management offices (PMOs) among owner/operator organizations as well as engineering, procurement, construction and maintenance (EPCM) firms. In order for being effective in a holistic way throughout the project life-cycle, a PMO needs to have 'adequate management skills' as well as 'essential technical capabilities' in cooperating with many different participants. One of the well-known examples of the PMO's tool to support these skills and capabilities is the effective 'work packaging (WP)' that serves as a common basis integrating all relevant information in a structured manner. In an attempt to enhance the construction productivity, the concept of 'advanced work packing (AWP)' has been introduced by Construction Industry Institute (CII). The AWP enables productivity to be improved by early planning of construction packages in the design phase "with the end in mind". The purpose of this study is to identify and evaluate the 'variables' of advanced work packing (AWP) for life-cycle information integration. Firstly, an extended concept of advanced WP based on the CII AWP was defined in order to comprehend many different issues of business functions (e.g. cost, schedule, quality, etc.). A structured list of major components and variables of AWP were then identified and examined for practical viability with real-world examples. Strategic fits and managerial effectiveness were stressed throughout the analyses. Findings, implications and lessons learned are briefly discussed as well.

  • PDF

Design and Implementation of Assessment System for SPICE Maintenance Process (SPICE 유지보수 프로세스 심사 시스템 설계 및 구현)

  • Kwon, Young-Oh;Ko, Young-Cheol;Kim, Jin-Woen;Koo, Yeon-Seol
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.8 no.2
    • /
    • pp.141-154
    • /
    • 2002
  • More efforts have been given to solve the problems related to computer software by process assessment. ISO/IEC 15504(SPICE) has been developed as standardized means for process assessment. The purpose of this paper is to design and implement a process assessment system which is appropriated to the Korean assessment environment based on ISO/IEC 15504. Referring documents are: IS0/1EC 15504 standardized documents, the assessment provisions of the SPICE committee in Korea, and research papers applied the existing process assessment system to real cases. Among a lot of processes, this system is designed for (ENG2). The proposed system in the paper will support the whole process of assessment, presenting the goals and end-products for each assessment step and making it possible to compose and save the product on the same screen. In determining process rating, assessors can retrieve the saved data and documents. By doing so, the system will improve reliability in process rating. The proposed system includes 7 steps of pre-assessment and 9 steps of actual assessment in order to fully prepare assessors for process assessment. And each step has been standardized to improve user-friendliness. This system is designed to provide assessors with specific details of standardized documents, the goals of the process, outcomes of implementing the process, and presentations of base practices and input/output products. Above all, the system automatically generates an assessment rating, by calculating based on input data which assessors make out. It also presents outcomes graphically.

Construction and Application of Intelligent Decision Support System through Defense Ontology - Application example of Air Force Logistics Situation Management System (국방 온톨로지를 통한 지능형 의사결정지원시스템 구축 및 활용 - 공군 군수상황관리체계 적용 사례)

  • Jo, Wongi;Kim, Hak-Jin
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.2
    • /
    • pp.77-97
    • /
    • 2019
  • The large amount of data that emerges from the initial connection environment of the Fourth Industrial Revolution is a major factor that distinguishes the Fourth Industrial Revolution from the existing production environment. This environment has two-sided features that allow it to produce data while using it. And the data produced so produces another value. Due to the massive scale of data, future information systems need to process more data in terms of quantities than existing information systems. In addition, in terms of quality, only a large amount of data, Ability is required. In a small-scale information system, it is possible for a person to accurately understand the system and obtain the necessary information, but in a variety of complex systems where it is difficult to understand the system accurately, it becomes increasingly difficult to acquire the desired information. In other words, more accurate processing of large amounts of data has become a basic condition for future information systems. This problem related to the efficient performance of the information system can be solved by building a semantic web which enables various information processing by expressing the collected data as an ontology that can be understood by not only people but also computers. For example, as in most other organizations, IT has been introduced in the military, and most of the work has been done through information systems. Currently, most of the work is done through information systems. As existing systems contain increasingly large amounts of data, efforts are needed to make the system easier to use through its data utilization. An ontology-based system has a large data semantic network through connection with other systems, and has a wide range of databases that can be utilized, and has the advantage of searching more precisely and quickly through relationships between predefined concepts. In this paper, we propose a defense ontology as a method for effective data management and decision support. In order to judge the applicability and effectiveness of the actual system, we reconstructed the existing air force munitions situation management system as an ontology based system. It is a system constructed to strengthen management and control of logistics situation of commanders and practitioners by providing real - time information on maintenance and distribution situation as it becomes difficult to use complicated logistics information system with large amount of data. Although it is a method to take pre-specified necessary information from the existing logistics system and display it as a web page, it is also difficult to confirm this system except for a few specified items in advance, and it is also time-consuming to extend the additional function if necessary And it is a system composed of category type without search function. Therefore, it has a disadvantage that it can be easily utilized only when the system is well known as in the existing system. The ontology-based logistics situation management system is designed to provide the intuitive visualization of the complex information of the existing logistics information system through the ontology. In order to construct the logistics situation management system through the ontology, And the useful functions such as performance - based logistics support contract management and component dictionary are further identified and included in the ontology. In order to confirm whether the constructed ontology can be used for decision support, it is necessary to implement a meaningful analysis function such as calculation of the utilization rate of the aircraft, inquiry about performance-based military contract. Especially, in contrast to building ontology database in ontology study in the past, in this study, time series data which change value according to time such as the state of aircraft by date are constructed by ontology, and through the constructed ontology, It is confirmed that it is possible to calculate the utilization rate based on various criteria as well as the computable utilization rate. In addition, the data related to performance-based logistics contracts introduced as a new maintenance method of aircraft and other munitions can be inquired into various contents, and it is easy to calculate performance indexes used in performance-based logistics contract through reasoning and functions. Of course, we propose a new performance index that complements the limitations of the currently applied performance indicators, and calculate it through the ontology, confirming the possibility of using the constructed ontology. Finally, it is possible to calculate the failure rate or reliability of each component, including MTBF data of the selected fault-tolerant item based on the actual part consumption performance. The reliability of the mission and the reliability of the system are calculated. In order to confirm the usability of the constructed ontology-based logistics situation management system, the proposed system through the Technology Acceptance Model (TAM), which is a representative model for measuring the acceptability of the technology, is more useful and convenient than the existing system.