• Title/Summary/Keyword: Real - time

Search Result 28,998, Processing Time 0.055 seconds

New Database Table Design Program of Real Time Network for High Speed Train

  • Cho, Chang-Hee;Park, Min-Kook;Kwon, Soon-Man;Kim, Yong-Ju;Kim, Sung-Shin
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2164-2168
    • /
    • 2003
  • Real time control system such as in factory automation fields, defense field, aerospace, railway industries, financial trading and so forth, includes multiple computers on multiple nodes, and share data to process various actions and functions. This is similar to multitasking in a multiprocessor computer system. The task processing efficiency of such system is proportionally increased by process speed of each process computer. And also it is greatly influenced by communication latencies of each node. To provide proper operation of such real time system, a network that can guarantee deterministic exchange of certain amount of data within a limited time is required. Such network is called as a real time network. As for modern distributed control system, the timeliness of data exchange gives important factor for the dynamics of entire control system. In a real time network system, exchanged data are determined by off-line design process to provide the timeliness of data. In other word, designer of network makes up a network data table that describes the specification of data exchanged between control equipments. And by this off-line design result, the network data are exchanged by predetermined schedule. First, this paper explains international standard real time network TCN (Train Communication Network) applied to the KHST (Korean High Speed Train) project. And then it explains the computer program developed for design tool of network data table of TCN.

  • PDF

A Study for Technique of Detecting the Real-time Route Aberrance in the Passage Route Using Ship's Domain Theory

  • Gang, Sang-Guen
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.23 no.3
    • /
    • pp.273-278
    • /
    • 2017
  • This paper is to study a technique to detect the real-time route aberrance on the passage route using bumper area of the ship domain theory. In order to evaluate the risk of route aberrance, a quarter line was created between the center line and the outer line, and a passage route with the image line outside the outer line was designed. It calculated the real-time route aberrance with the vessel bumper area to measure the risk level on the passage route. The route aberrance using overlap bumper area was simulated through three kinds of scenario vessel at the designed passage route. In this paper, we proposed Ratio to Aberrance Risk as one of the evaluation parameter to detect the route aberrance risk at each sector in the passage route and to give the evaluation criteria of 5 levels for seafarer's navigation safety. The purpose of this work is to provide the information of the route aberrance to seafarer automatically, to make it possible to prevent the human errors of seafarer on the high risk aberrance route. As the real-time risk of route aberrance on the passage route is automatically evaluated, it was well thought that seafarer can have only a little workload in order to know the risk of route aberrance at early-time. Following the further development of this work, the techniques for detecting the real-time route aberrance will be able to use the unmanned vessel.

A Systems Engineering Approach to Real-Time Data Communication Network for the APR1400

  • Ibrahim, Ahmad Salah;Jung, Jae-cheon
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.13 no.2
    • /
    • pp.9-17
    • /
    • 2017
  • Concept development of a real-time Field Programmable Gate Array (FPGA)-based switched Ethernet data communication network for the Man-Machine Interface System (MMIS) is presented in this paper. The proposed design discussed in this research is based on the systems engineering (SE) approach. The design methodology is effectively developed by defining the concept development stage of the life-cycle model consisting of three successive phases, which are developed and discussed: needs analysis; concept exploration; and concept definition. This life-cycle model is used to develop an FPGA-based time-triggered Ethernet (TTE) switched data communication network for the non-safety division of MMIS system to provide real-time data transfer from the safety control systems to the non-safety division of MMIS and between the non-safety systems including control, monitoring, and information display systems. The original IEEE standard 802.3 Ethernet networks were not typically designed or implemented for providing real-time data transmission, however implementing a network that provides both real-time and on-demand data transmission is achievable using the real-time Ethernet technology. To develop the design effectively, context diagrams are implied. Conformance to the stakeholders needs, system requirements, and relevant codes and standards together with utilizing the TTE technology are used to analyze, synthesize, and develop the MMIS non-safety data communication network of the APR1400 nuclear power plant.

Real-time Active Vibration Control of Smart Structure Using Adaptive PPF Controller (적응형 PPF 제어기를 이용한 지능구조물의 실시간 능동진동제어)

  • Heo, Seok;Lee, Seung-Bum;Kwak, Moon-Kyu;Baek, Kwang-Hyun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.4
    • /
    • pp.267-275
    • /
    • 2004
  • This research is concerned with the development of a real-time adaptive PPF controller for the active vibration suppression of smart structure. In general, the tuning of the PPF controller is carried out off-line. In this research, the real-time learning algorithm is developed to find the optimal filter frequency of the PPF controller in real time and the efficacy of the algorithm is proved by implementing it in real time. To this end, the adaptive algorithm is developed by applying the gradient descent method to the predefined performance index, which is similar to the method used popularly in the optimization and neural network controller design. The experiment was carried out to verify the validity of the adaptive PPF controller developed in this research. The experimental results showed that adaptive PPF controller is effective for active vibration control of the structure which is excited by either impact or harmonic disturbance. The filter frequency of the PPF controller is tuned in a very short period of time thus proving the efficiency of the adaptive PPF controller.

Performance Evaluation of Switched Ethernet for Real-time Industrial Communication (실시간 산업용 통신을 위한 Switched Ethernet의 성능 평가)

  • Kim, D. H.;Lee, K. C.;Lee, S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.491-494
    • /
    • 2002
  • The real-time industrial network often referred to as fieldbus, is an important element for building automated manufacturing systems. Thus, in order to satisfy the real-time requirements of field devices such as sensors, actuators, and controllers. numerous standard organizations and vendors have developed various fieldbus protocols such as Profibus, WorldFIP and Foundation Fieldbus. However, the application of fieldbus has been limited due to the high cost of hardware and the difficulty in interfacing with multi-vendor products. In order to solve these problems, the computer network technology, especially Ethernet (IEEE 802.3), is being adopted lo the industrial environment. The crucial technical obstacle for Ethernet is that its non-deterministic behavior makes it inadequate for industrial applications where real-time data such as control command and alarm signal hale to be delivered within a certain time limit. Recently, the development of switched Ethernet shows a very promising prospect for industrial application due to the elimination of uncertainties in the network operation resulting in much improved performance. This paper focuses on the application of the switched Ethernet for industrial comm unications.

  • PDF

Design and Evaluation of Real-time GNSS Attitude Determination Systems using Low Cost Receivers (저가형 수신기를 이용한 실시간 GNSS 자세결정 시스템 설계 및 성능 평가)

  • Chae, JeongGeun;Lee, DongSun;Kang, In-Suk;Park, Chansik
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.9
    • /
    • pp.1259-1265
    • /
    • 2014
  • In this paper, the real-time attitude determination based Matlab using low-cost receivers was designed and evaluated. The GNSS attitude determination system was implemented to operation in real-time by TimerCallback in MATLAB. The TTM(Transmission Time Misalignment) of U-blox receiver was confirmed through zero baseline tests and this problem was revised. The computed attitude by the high-cost NovAtel receiver was compared to the computed attitude by the low-cost U-blox receiver. As a result of this, the performance of attitude determination systems by low-cost receiver was confirmed. To determine baseline, LAMBDA and BC-LAMBDA for integer ambiguities search methods were used. To confirm suitable integer ambiguity search method in real-time attitude determination algorithm, determined baselines by two methods were compared, and it was confirmed that BC-LAMBDA is more suitable. As a result of this, the operation of real-time attitude determination system was confirmed using 3 low-cost receivers.

A Study on the Implementation of CAN in the Distributed System of Power Plant (발전설비 분산제어 시스템에서 CAN 구축기술 연구)

  • Kim, Uk-Heon;Hong, Seung-Ho
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.6
    • /
    • pp.760-772
    • /
    • 1999
  • The CAN is a serial communication protocol for distributed real-time control and automation systems. Data generated from field devices in the distributed control of power plant are classified into three categories: real-time event data, real-time control data, non-real-time data. These data share a CAN medium. If the traffic of the CAN protocol is not efficiently controlled, performance requirements of the power plant system could not be satisfied. This paper proposes a bandwidth allocation algorithm that can be applicable to the CAN protocol. The bandwidth allocation algorithm not only satisfies the performance requirements of the real-time systems in the power plant but also fully utilizes the bandwidth of CAN. The bandwidth allocation algorithm introduced in this paper is validated using the integrated discrete-event/continuous-time simulation model which comprises the CAN network and distributed control system of power plant.

  • PDF

A study on Real-Time Implementation of Robust Control for Horizontal Articulated Arm with Eight Axis

  • Nguyen, Hoo-Cong;Kim, Jun-Hong;Lee, Hee-Seop
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.18 no.3
    • /
    • pp.139-149
    • /
    • 2015
  • In this paper, we describe a new approach to perform real-time implementation of an robust controller for robotic manipulator based on digital signal processors in this paper. The Texas Instruments DSPs chips are used in implementing real-time adaptive control algorithms to provide enhanced motion control performance for dual-arm robotic manipulators. In the proposed scheme, adaptation laws are derived from model reference adaptive control principle based on the improved direct Lyapunov method. The proposed adaptive controller consists of an adaptive feed-forward and feedback controller and time-varying auxiliary controller elements. The proposed control scheme is simple in structure, fast in computation, and suitable for real-time control. Moreover, this scheme does not require any accurate dynamic modeling, nor values of manipulator parameters and payload. Performance of the proposed adaptive controller is illustrated by simulation and experimental results for robot manipulator consisting of dual arm with eight degrees of freedom at the joint space and cartesian space.

Multicore Real-Time Scheduling to Reduce Inter-Thread Cache Interferences

  • Ding, Yiqiang;Zhang, Wei
    • Journal of Computing Science and Engineering
    • /
    • v.7 no.1
    • /
    • pp.67-80
    • /
    • 2013
  • The worst-case execution time (WCET) of each real-time task in multicore processors with shared caches can be significantly affected by inter-thread cache interferences. The worst-case inter-thread cache interferences are dependent on how tasks are scheduled to run on different cores. Therefore, there is a circular dependence between real-time task scheduling, the worst-case inter-thread cache interferences, and WCET in multicore processors, which is not the case for single-core processors. To address this challenging problem, we present an offline real-time scheduling approach for multicore processors by considering the worst-case inter-thread interferences on shared L2 caches. Our scheduling approach uses a greedy heuristic to generate safe schedules while minimizing the worst-case inter-thread shared L2 cache interferences and WCET. The experimental results demonstrate that the proposed approach can reduce the utilization of the resulting schedule by about 12% on average compared to the cyclic multicore scheduling approaches in our theoretical model. Our evaluation indicates that the enhanced scheduling approach is more likely to generate feasible and safe schedules with stricter timing constraints in multicore real-time systems.

An Energy-Efficient Hybrid Scheduling Technique for Real-time and Non-real-time Tasks in a Sensor Node (센서 노드에서 에너지 효율적인 실시간 및 비실시간 태스크의 혼합 스케줄링 기법)

  • Tak, Sung-Woo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.8
    • /
    • pp.1820-1831
    • /
    • 2011
  • When both types of periodic and aperiodic tasks are required to run on a sensor node platform with limited energy resources, we propose an energy-efficient hybrid task scheduling technique that guarantees the deadlines of real-time tasks and provides non-real-time tasks with good average response time. The proposed hybrid task scheduling technique achieved better performance than existing EDF-based DVS scheduling techniques available in the literature, the FIFO-based TinyOS scheduling technique, and the task-clustering based non-preemptive real-time scheduling technique.