• Title/Summary/Keyword: Ready-mixed concrete plant

Search Result 51, Processing Time 0.027 seconds

Influence of Cold weather Ready Mixed Concrete Quality according to Needs of Customer (고객요구에 따른 한중레미콘 품질의 영향)

  • 조일호;양재성;김성욱
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.647-650
    • /
    • 2001
  • The purpose of this study was the influence of cold weather ready mixed concrete quality according to needs of customer were investigated by measurements of slump, air content, temperature and compressive strength. As a results, cold weather ready mixed concrete using high standard admixtures, high early strength admixtures and cold weather concrete plant were similarly to slump, air content, temperature and compressive strength.

  • PDF

Ready mixed concrete behavior of granulated blast furnace slag contained cement

  • Karim, M. Razaul;Islam, A.B.M. Saiful;Chowdhury, Faisal I.;Rehman, Sarder Kashif Ur;Islam, Md. Rabiul
    • Computers and Concrete
    • /
    • v.21 no.2
    • /
    • pp.139-147
    • /
    • 2018
  • Due to enhanced construction requirement, ready mixed concrete are being popular day by day. The current study aimed to develop ready mixed concrete using GBFS contained cement and determine its properties of fresh and hardened states. A real scale experiment was set up in a ready mixed plant for measuring workability and compressive strength. The workability was tested after mixing (within 5 minutes), 30, 60, 90, 120 and 150 minutes of the running of bulk carrier. The ready mixed carrier employed spinning motion i.e., rotating around its axis with 20 RPM and running on road with 1km/h speed. The mixing ratio of cement: sand:gravel, water to cement ratio, super plasticizer were, 1:1.73:2.47, 0.40 and 6% of cement, respectively. The chemical composition of raw material was determined using XRF and the properties of cements were measured according to ASTM standards. The experimental results confirm that the cement with composition of 6.89% of GBFS, 4% of Gypsum and 89.11% of clinker showed the good compressive strength and workability of concrete after 150 minutes of the spinning motion in bulk carrier.

A Study on the Automatic Measurement of Solid Content in Recycled Water in Ready Mixed Concrete Plant (레디믹스트 콘크리트 플랜트의 회수수 농도 측정 자동화에 관한 연구)

  • Choi, Young-Cheol;Moon, Gyu-Don;Cho, Bong-Seok
    • Journal of the Korean Society of Safety
    • /
    • v.29 no.4
    • /
    • pp.123-131
    • /
    • 2014
  • Whole amount of waste water, approximately 921.6 liter, for cleaning a ready mixed concrete truck should be used to produce concrete as a mixing water or cleaning water. Recycling water for concrete mixing contains solids, which cause decrease in slump, air and compressive strengths, so it may influence on poor concrete quality. Therefore, it has been maintained to use recycling water with less than 3 percent of solids. Since no evaluation system has been constructed to directly reflect on variability of recycling water from ready mixed concrete plants, it is necessary to develop "Automatic recycling solid measuring system" for quality controls in real time. In this research, sensors measuring waste water concentration in ultrasonic and inductance methods were developed, and automatic system using the sensors were established. The accuracy of measurement sensors developed for recycling water based on various conditions of concentration was proved, and application limits were evaluated. Also, concentration of recycling water using sensors developed from ready mixed concrete plant was measured, and curing method verified the accuracy of the sensors. Moreover, measurement sensors for recycling water in various locations were installed to evaluate the effects on measuring method and spots. The automatic measuring system for recycling water concentration, which is developed in the research, will contribute to improve concrete quality safety through reliable solids maintenance.

Study on liquid carbonation using the recycling water of ready-mixed concrete (레미콘회수수를 이용한 액상탄산화에 관한 연구)

  • Lim, Yun-Hui;Lee, Ju-Yeol;Choi, Chang-Sik;Hong, Bum-Ui;Park, Jin-Won;Lee, Dae-Young;Park, Byung-Hyun
    • Journal of the Korean Applied Science and Technology
    • /
    • v.30 no.4
    • /
    • pp.770-778
    • /
    • 2013
  • In this study, a liquid carbonation method was applied for producing precipitate calcium carbonate by liquid-liquid reaction. We recycled the recycling water of ready-mixed concrete, one of construction waste for use source of carbonate ion. A supernatant separated from the recycling water of ready-mixed concrete, as a result of ICP analysis of a cation, $Ca^{2+}$ was contained up to 1100 ppm. We used MEA as a $CO_2$ absorbent for the liquid carbonation. A precipitate $CaCO_3$ was produced at more than MEA 20 wt%. The precipitate $CaCO_3$ as a final product was separated and dried. The result of XRD was confirmed the generation of $CaCO_3$ to calcite structure.

Study on optimization of liquid carbonation pilot plant (system) using sludge water of ready-mixed concrete (레미콘회수수를 이용한 액상탄산화 Pilot plant(System) 최적화에 관한 연구)

  • Kim, Jae Gang;Shin, Jae Ran;Kim, Hae Gi;Kang, Ho Jong
    • Journal of the Korean Applied Science and Technology
    • /
    • v.33 no.2
    • /
    • pp.239-246
    • /
    • 2016
  • In this study, recycling sludge water of Ready-mixed concrete, and was carried out to optimize the system for recycling of the $CO_2$. The most important process in the liquid phase using a carbonation reaction can be recovered ready-mixed concrete is a process for the $Ca^{2+}$ release. $Ca^{2+}$ concentration of the experiment relative to the pH being lowered by the acidic substance during elution was performed. $CO_2$ was trapped in the MEA solution using a generator flue gas. In ready-mixed concrete can be synthesized $CaCO_3$ up to 11kg/1ton. The resulting $CaCO_3$ analysis results show that it is possible to use paper industry.

A Study on the Tendency of Fugitive Dust for Environmental Maintenance at the Aggregate Unloading Site of Ready-mixed Concrete Plants (레미콘 플랜트의 골재하차장 환경 유지관리를 위한 비산먼지 발생 경향에 관한 연구)

  • Cho, Hyun-Woo;Shin, Hong-Chul;Chung, Yoon-Seok
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.5
    • /
    • pp.103-111
    • /
    • 2022
  • Fine dust can cause serious problems to human health, and fugitive dust generated at construction sites is one of the main sources of fine dust in Korea. However, monitoring of the amount of fugitive dust generated at the ready-mixed concrete plant site is not performed, and only passive monitoring methods are partially applied in the field. Since it is impossible to control fugitive dust after it is exposed to the air, it is very important to suppress the occurrence or to remove it immediately at the stage of occurrence. Therefore, after identifying the characteristics through real-time monitoring in the fugitive dust generation stage, systematic management is required for suppressing or removing scattering dust in the field. In this study, the scattering dust generation characteristics were analyzed by measuring the particle mass concentration(PMC) of Fugitive dust generated at the aggregate unloading site of the ready-mixed concrete plant in real-time.

A Grope of Development Direction for the New Ready-mixed Shotcrete through the Batch Plant in Field (현장 배치플랜트 실태조사를 통한 새로운 레디믹스트 숏크리트 개발 방향 모색)

  • Ma, Sang-Joon;Lee, Heung-Soo;Choi, Hee-Sup;Kim, Dong-Min
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.845-848
    • /
    • 2008
  • In this study, through the Batch Plant in field which is carrying out in the country, this research is going to grope the development of Ready-mixed Shotcrete that can improve the construction of shotcrete, and long-term durability. Accordingly, in this study, the Batch Plant in field which is only for shotcrete will be chosen in random so that can be aware the problems of the Batch Plant in field, and when the results come out, the shotcrete system will be prepared that is based on the results of rsearch, and also can be used in preparation index of shotcrete. Moreover, the results will be able to improve an efficent tool that can increase shotcrete quality.

  • PDF

An Experimental Study on Prediction of Compressive Strength of the In situ Mass Concrete with Fly-ash (플라이애쉬를 혼입한 현장타설 매스콘크리트의 압축강도 추정에 관한 실험적 연구)

  • Khil, Bae-Su;Chae, Young-Suk;Nam, Jae-Hyun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.3 no.1
    • /
    • pp.163-169
    • /
    • 1999
  • The object of this study is to compare properties of massive fly-ash concrete with plain concrete. Two concrete mixtures comprising two batch each $1.0m^3$ in volume, were made from ready mixed concrete batch plant. The water-to-cementitious materials ratio was kept constant at 51.4%. Therefore, massive concrete specimen($W800{\times}D800{\times}H800mm$) was cast from ready mixed concrete to analyze history of temperature and core strength properties. Bleeding, time of slump loss and time of setting of the fresh concrete were measured. In order to estimate the properties of massive fly-ash concrete in hardened concrete, non-destructive tests such as rebound hardness, ultrasonic pulse velocity and maturity were performed and analyzed.

  • PDF