• Title/Summary/Keyword: Reactor stability

Search Result 345, Processing Time 0.029 seconds

Hydrogen Brittleness on Welding Part for SDS Bottles (삼중수소 저장용기 이종 접합부의 수소 취성)

  • Kim, Raymund K.I.;Jung, Seok;Kang, Hyungoo;Chang, Minho;Yun, Seihun;Hong, Tae-Whan
    • Journal of Hydrogen and New Energy
    • /
    • v.24 no.2
    • /
    • pp.121-127
    • /
    • 2013
  • Tritium was attracted with high energy source in neutron fusion energy systems. A number of research was performed in tritium storage materials. The Korea was raised storage and delivery systems (SDS) of international thermonuclear experimental reactor (ITER) research. However, bottles of SDS would be important because of stability. The bottles have a welding zone, this zone will be vulnerable to hydrogen embrittlement. This zone have a high thermodynamic energy and heat deterioration. Therefore bottles were studied about hydrogen embrittlement to retain stability. The heat treatment of hydrogen was carried under pressure-composition-temperature (PCT) apparatus because of checking at real time. And then, mechanical properties were evaluated by tensile test and hardness test. In results of this study, hydrogen atmosphere condition is very important by tensile test and kinetics test. The samples were evaluated, that is more weak hydrogen pressure, increasing temperature and time. This results could be useful in SDS bottle designs.

Immobilization and Characterization of Rifamycin B Oxidase in Cellulose Acetate Beads (셀룰로오스 아세테이트에 고정화된 리파마이신 B 산화효소의 특성)

  • Chung, Bong-Hyun;Chang, Ho-Nam;Han, Moon-Hi
    • Microbiology and Biotechnology Letters
    • /
    • v.13 no.2
    • /
    • pp.115-118
    • /
    • 1985
  • Rifamycin B oxidase converts rifamycin B to rifamycin S using oxygen as cosubstrate. Humnicola spp. (ATCC 20620) was treated with acetone and the cell powder was immobilized with cellulose acetate. The properties of the immobilized enzyme was examined. The optimum pHs of the immobilized and the free enzymes were 7.2. The optimum temperature of the immobilized enzyme was at 50-55$^{\circ}C$, which was 5$^{\circ}C$ higher than that of the free enzyme. The activities of the immobilized enzyme appeared less sensistive with respect to the changes of temperature and pH as compared to those of the free enzyme. Twenty percent of the enzyme activity was recovered when the enzyme was immobilized in 3mm beads. The storage stability was good below 4$0^{\circ}C$, but the activity decreased very rapidly above 5$0^{\circ}C$. The physical strength of the beads was good and was suitable as packing material in a three-phase enzyme reactor.

  • PDF

Highly Selective Amination of o- and p-Alkyl Phenols over Pd/Al2O3-BaO

  • Ma, Jianchao;Wang, Huabang;Sun, Meng;Yang, Fan;Wu, Zhiwei;Wang, Donghua;Chen, Ligong
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.2
    • /
    • pp.387-392
    • /
    • 2012
  • A series of Pd-based catalysts were prepared and examined for the amination of 2,6-dimethylphenol in a fixedbed reactor. The best results were obtained for Pd/$Al_2O_3$-BaO with a conversion of 99.89% and a selectivity of 91.16%. These catalysts were characterized using BET, XRD, XPS, TEM and $NH_3$-TPD. Doped BaO not only improved the dispersion of the Pd particles but also decreased the acidity of the catalyst, which remarkably enhanced the selectivity and stability of the catalyst. The generality of Pd/$Al_2O_3$-BaO for this kind of reaction was demonstrated by catalytic aminations of o- and p-alkyl phenols.

A Study on the Water Quality Management Using the Rotifers (윤충류를 활용한 하천 및 연안의 수질관리에 관한 연구)

  • Kim, Jeong-Sook
    • Journal of Environmental Science International
    • /
    • v.16 no.2
    • /
    • pp.227-232
    • /
    • 2007
  • Water pollution in enclosed water bodies such as lake and river has become a serious problem over the world. Domestic wastewater is responsible for more than 60 % pollution load in public water area in Korea. Effluent of the treated domestic wastewater at low removal level is abundantly fed rivers and lakes and thus be an serious cause of lake pollution. Therefore, effective implement of domestic wastewater treatment in basin of lake and river must be prepared. The septic tank is one of the effective domestic wastewater treatment equipment and used in individual treatment for a unit of household, The purpose of septic tank as biological treatment system is simultaneously to remove BOD, T-N, T-P and reduce turbidity from influent. Accordingly, the appropriate control of functional microorganisms is important subject for the establishment of stability and economy of the biological treatment method. Especially, microanimals as a high-ranked microorganisms of food-chain are important, because microanimals control the other microorganisms especially various bacteria and effect on function of treatment. Therefore, it is necessary that functional predator like rotifers are attached in wastewater treatment process. In this study, the methods for attachment high density the rotifer to and improvement of transparency in the effluence by a dense rotifer was examined using laboratory scale biological treatment reactor simulated septic tank and real one.

The Minimization of Generator Output Variations by Impulse Chamber Pressure Control during Turbine Valve Test (터빈 밸브시험 중 충동실 압력제어에 의한 발전기 출력변동 최소화)

  • Choi, In-Kyu;Kim, Jong-An;Park, Doo-Yong;Woo, Joo-Hee;Shin, Jae-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.1
    • /
    • pp.152-159
    • /
    • 2010
  • This paper describes the actual application of a feedback control loop as a means for minimizing turbine impulse chamber pressure variation during the turbine steam valve tests at a 1,000 MW nuclear power plant. The chamber pressure control loop was implemented in the new digital control system which was installed as a replacement for the old analog type control system. There has been about 40MW of the generator output change during the steam valve tests, especially the high pressure governing valve tests, because the old control system had not the impulse chamber pressure control so the operators had to compensate steam flow drop manually. The process of each valve test consists of a closing process and an reopening process and the operators can make sure that the valves are in their sound conditions by checking the valves movement. The control algorithm described in this paper contributed to keep the change in megawatt only to 6MW during the steam valve tests. Thereby, the disturbance to reactor control was reduced, and the overall plant control system's stability was greatly improved as well.

Synthesis and Application of $CeO_2-Sm_2O_3$ Solid Electrolyte Membranes with Electronic and Ionic Conductivities (전자 및 이온 전도성 $CeO_2-Sm_2O_3$ 고체 전해질 막의 합성 및 응용)

  • 현상훈;권재환;김승구;김계태
    • Journal of the Korean Ceramic Society
    • /
    • v.35 no.4
    • /
    • pp.355-363
    • /
    • 1998
  • The oxygen flux of SDC ($Sm_2O_3\;doped\;CeO_2$) solid electrolyte membranes with electronic and oxygen ion-ic conductivities has been investigated as a basic research in order to develop the conversion process of na-tural gas to syngas using the ceramic membrane reactor. Tube type membranes(1 mm thickness) were fa-bricated by slip casting of SDC powders prepared by the oxalate coprecipitaion method. Dense oxygen per-meation membranes(0.1 mm thickness) could be synthesized via sintering at $1450^{\circ}C$ for 2h and their re-lative density was over 95% The oxygen flux through SDC membranes doped 20mol% $Sm_15$ was about $1.13{\times}10^{-5}\;mol/m_2{\cdot}sec$ at low temperature around $800^{\circ}C$. In addition the SDC membranes showed a good thermaal stability for a long period of service.

  • PDF

Effects of $SiO_2$ on Catalytic Properties of Iron-Based Catalysts for Fischer-Tropsch Synthesis (FT 합성반응용 철촉매에 미치는 촉매특성에 미치는 $SiO_2$ 첨가효과)

  • Chun, Dong-Hyun;Kim, Hak-Joo;Hyun, Sun-Taek;Yang, Jung-Hoon;Lee, Ho-Tae;Yang, Jung-Il;Jung, Heon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.861-862
    • /
    • 2009
  • Precipitated iron-based catalysts are highly promising for the Fischer-Tropsch synthesis (FTS), in particular for the low temperature FTS below $280^{\circ}C$, because of their high activity and low cost. $SiO_2$ is an essential promoter for the precipitated iron-based catalysts to improve the attrition strength and physical stability. In this study, we carried out FTS over precipitated iron-based catalysts with and without $SiO_2$ in a fixed-bed reactor. The catalysts were prepared by a conventional co-precipitation method. In case of the catalysts with $SiO_2$, we used two comparative preparation methods, i.e., incorporation of $SiO_2$ before precipitation (denoted as precipitated $SiO_2$) and after precipitation (denoted as binder $SiO_2$), respectively. The addition of $SiO_2$ crucially affects both physico-chemical properties and catalytic peformance of precipitated iron-based catalysts.

  • PDF

Synthesis of an Aspartame Precursor Using Immobilized Thermolysin in an Organic Solvent

  • Ahn, Kyung-Seop;Lee, In-Young;Kim, Ik-Hwan;Park, Young-Hoon
    • Journal of Microbiology and Biotechnology
    • /
    • v.4 no.3
    • /
    • pp.204-209
    • /
    • 1994
  • The synthesis of N-(benzyloxycarbonyl)-L-aspartyl-L-phenylalanine methylester (Z-APM), a precursor of aspartame, from N-(benzyloxycarbonyl)-L-aspartic acid (Z-Asp) and L-phenylalanine methylester hydrochlolide($L-PM\cdot HCI$) was investigated in a saturated-ethylacetate single phase system using immobilized thermolysin. Among the various supports tested, glyceryl-CPG was found to be most efficient for retaining enzyme activity. The enzyme immobilized onto glyceryl-CPG also showed the highest activity for Z-APM synthesis in saturated ethyl acetate. Z-APM conversion yield in saturated ethylacetate was half of that obtained in an ethyl acetate-buffer two-phase system under the same reaction conditions. However, as the mole ratio of $L-PM \cdot HCI$ to Z-Asp was increased to 4.0, the conversion yield reached 95 %. When continuous synthesis of Z-APM was canied out in a plug flow reactor (PFR) with 80 mM of L-PMㆍHCI and 20 mM of Z-Asp in saturated ethylacetate (pH 5.5), more than 95 % of Z-Asp was converted to Z-APM with a space velocity of 1.16 $hr^{-1} at 40^{\circ}C$. Although the operational stability in PFR was reduced rapidly, more than 80% of initial activity was maintained in CSTR even after a week of operation.

  • PDF

Development of Bioreactor System for L-Tyrosine Synthesis Using Thermostable Tyrosine Phenol-Lyase

  • Kim, Do-Young;Rha, Eugene;Choi, Su-Lim;Song, Jae-Jun;Hong, Seung-Pyo;Sung, Moon-Hee;Lee, Seung-Goo
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.1
    • /
    • pp.116-122
    • /
    • 2007
  • An efficient enzyme system for the synthesis of L-tyrosine was developed using a fed-batch reactor with continuous feeding of phenol, pyruvate, and ammonia. A thermo- and chemostable tyrosine phenol-lyase from Symbiobacterium toebii was employed as the biocatalyst in this work. The enzyme was produced using a constitutive expression system in Escherichia coli BL21, and prepared as a soluble extract by rapid clarification, involving treatment with 40% methanol in the presence of excess ammonium chloride. The stability of the enzyme was maintained for at least 18 h under the synthesis conditions, including 75 mM phenol at pH 8.5 and $40^{\circ}C$. The fed-batch system (working volume, 0.51) containing 1.0 kU of the enzyme preparation was continuously fed with two substrate preparations: one containing 2.2 M phenol and 2.4 M sodium pyruvate, and the other containing 0.4 mM pyridoxal-5-phosphate and 4M ammonium chloride (pH 8.5). The system produced 130g/I of L-tyrosine within 30h, mostly as precipitated particles, upon continuous feeding of the substrates for 22 h. The maximum conversion yield of L-tyrosine was 94% on the basis of the supplied phenol.

Decomposition of HFCs using Steam Plasma (스팀 플라즈마를 이용한 HFCs 분해특성)

  • Kim, Kwan-Tae;Kang, Hee Seok;Lee, Dae Hoon;Lee, Sung Jin
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.29 no.1
    • /
    • pp.27-37
    • /
    • 2013
  • CFCs (Chlorofluorocarbons) and HCFCs (Hydrochlorofluorocarbons) that are chemically stable were proven to be a greenhouse gases that can destroy ozone layer. On the other hand, HFCs (Hydrofluorocarbons) was developed as an alternative refrigerant for them, but HFCs still have a relatively higher radiative forcing, resulting in a large Global Warming Potential (GWP) of 1,300. Current regulations prohibit production and use of these chemicals. In addition, obligatory removal of existing material is in progress. Methods for the decomposition of these material can be listed as thermal cracking, catalytic decomposition and plasma process. This study reports the development of low cost and high efficiency plasma scrubber. Stability of steam plasma generation and effect of plasma parameters such as frequency of power supply and reactor geometry have been investigated in the course of the development. Method for effective removal of by-product also has been investigated. In this study, elongated rotating arc was proven to be efficient in decomposition of HFCs above 99% and to be able to generate stable steam plasma with steam contents of about 20%.