• Title/Summary/Keyword: Reactor safety

Search Result 1,238, Processing Time 0.026 seconds

A Loss-of-RHR Event under the Various Plant Configurations in Low Power or Shutdown Conditions

  • Seul, Kwang-Won;Bang, Young-Seok;Lee, Sukho;Kim, Hho-Jung
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1997.05a
    • /
    • pp.551-556
    • /
    • 1997
  • A present study addresses a loss-of-RHR event as an initiating event under specific low power or shutdown conditions. Two typical plant configurations, cold leg opening case with water-filled steam generators and pressurizer opening case with emptied steam generators, were evaluated using the RELAP5/ MOD3.2 code. The calculation was compared with the experiment conducted at ROSA-IV/LSTF in Japan. As a result, the code was capable of simulating the system transient behavior following the event. Especially, thermal hydraulic transport processes including non-condensable gas behavior were reasonably predicted with an appropriate time step and CPU time. However, there were some code deficiencies such as too large system mass errors and severe flow oscillations in core region.

  • PDF

Containment Closure Time Following Loss of Cooling Under Shutdown Conditions of YGN Units 3&4

  • Seul, Kwang-Won;Bang, Toung-Seok;Kim, Se-Won;Kim, Hho-Jung
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1998.05a
    • /
    • pp.647-652
    • /
    • 1998
  • The YGN Units 3&4 plant conditions during shutdown operation were reviewed to identified the possible even scenarios following the loss of shutdown cooling. The Thermal hydraulic analyses were performed for the five cases of RCS configurations under the worst event scenario, unavailable secondary cooling and no RCS inventory makeup, using the RELAP5/MOD3.2 code to investigate the plant behavior, From the analyses results, times to boil, times to core uncovery and times to core heat up were estimated to determined the containment closure time to prevent the uncontrolled released of fission products to atmosphere, These data provide useful information to the abnormal procedure to cope with event.

  • PDF

SAFETY OF THE SUPER LWR

  • Ishiwatari, Yuki;Oka, Yoshiaki;Koshizuka, Seiichi
    • Nuclear Engineering and Technology
    • /
    • v.39 no.4
    • /
    • pp.257-272
    • /
    • 2007
  • Supercritical water-cooled reactors (SCWRs) are recognized as a Generation IV reactor concept. The Super LWR is a pressure-vessel type thermal spectrum SCWR with downward-flow water rods and is currently under study at the University of Tokyo. This paper reviews Super LWR safety. The fundamental requirement for the Super LWR, which has a once-through coolant cycle, is the core coolant flow rate rather than the coolant inventory. Key safety characteristics of the Super LWR inhere in the design features and have been identified through a series of safety analyses. Although loss-of-flow is the most important abnormality, fuel rod heat-up is mitigated by the "heat sink" and "water source" effects of the water rods. Response of the reactor power against pressurization events is mild due to a small change in the average coolant density and flow stagnation of the once-through coolant cycle. These mild responses against transients and also reactivity feedbacks provide good inherent safety against anticipated-transient-without-scram (ATWS) events without alternative actions. Initiation of an automatic depressurization system provides effective heat removal from the fuel rods. An "in-vessel accumulator" effect of the reactor vessel top dome enhances the fuel rod cooling. This effect enlarges the safety margin for large LOCA.

Electric power frequency and nuclear safety - Subsynchronous resonance case study

  • Volkanovski, Andrija;Prosek, Andrej
    • Nuclear Engineering and Technology
    • /
    • v.51 no.4
    • /
    • pp.1017-1023
    • /
    • 2019
  • The increase of the alternate current frequency results in increased rotational speed of the electrical motors and connected pumps. The consequence for the reactor coolant pumps is increased flow in primary coolant system. Increase of the current frequency can be initiated by the subsynchronous resonance phenomenon (SSR). This paper analyses the implications of the SSR and consequential increase of the frequency on the nuclear power plant safety. The Simulink $MATLAB^{(R)}$ model of the steam turbine and governor system and RELAP5 computer code of the pressurized water reactor are used in the analysis. The SSR results in fast increase of reactor coolant pumps speed and flow in the primary coolant system. The turbine trip value is reached in short time following SSR. The increase of flow of reactor coolant pumps results in increase of heat removal from reactor core. This results in positive reactivity insertion with reactor power increase of 0.5% before reactor trip is initiated by the turbine trip. The main parameters of the plant did not exceed the values of reactor trip set points. The pressure drop over reactor core is small discarding the possibility of core barrel lift.

SAFETY STUDIES ON HYDROGEN PRODUCTION SYSTEM WITH A HIGH TEMPERATURE GAS-COOLED REACTOR

  • TAKEDA TETSUAKI
    • Nuclear Engineering and Technology
    • /
    • v.37 no.6
    • /
    • pp.537-556
    • /
    • 2005
  • A primary-pipe rupture accident is one of the design-basis accidents of a High-Temperature Gas-cooled Reactor (HTGR). When the primary-pipe rupture accident occurs, air is expected to enter the reactor core from the breach and oxidize in-core graphite structures. This paper describes an experiment and analysis of the air ingress phenomena and the method fur the prevention of air ingress into the reactor during the primary-pipe rupture accident. The numerical results are in good agreement with the experimental ones regarding the density of the gas mixture, the concentration of each gas species produced by the graphite oxidation reaction and the onset time of the natural circulation of air. A hydrogen production system connected to the High-Temperature Engineering Test Reactor (HTTR) Is being designed to be able to produce hydrogen by themo-chemical iodine-Sulfur process, using a nuclear heat of 10 MW supplied by the HTTR. The HTTR hydrogen production system is first connected to a nuclear reactor in the world; hence a permeation test of hydrogen isotopes through heat exchanger is carried out to obtain detailed data for safety review and development of analytical codes. This paper also describes an overview of the hydrogen permeation test and permeability of hydrogen and deuterium of Hastelloy XR.

Study on bidirectional fluid-solid coupling characteristics of reactor coolant pump under steady-state condition

  • Wang, Xiuli;Lu, Yonggang;Zhu, Rongsheng;Fu, Qiang;Yu, Haoqian;Chen, Yiming
    • Nuclear Engineering and Technology
    • /
    • v.51 no.7
    • /
    • pp.1842-1852
    • /
    • 2019
  • The AP1000 reactor coolant pump is a vertical shielded-mixed flow pump, is the most important coolant power supply and energy exchange equipment in nuclear reactor primary circuit system, whose steadystate and transient performance affect the safety of the whole nuclear island. Moreover, safety demonstration of reactor coolant pump is the most important step to judge whether it can be practiced, among which software simulation is the first step of theoretical verification. This paper mainly introduces the fluid-solid coupling simulation method applied to reactor coolant pump, studying the feasibility of simulation results based on workbench fluid-solid coupling technology. The study found that: for the unsteady calculations of the pure liquid media, the average head of the reactor coolant pump with bidirectional fluid-solid coupling decreases to a certain extent. And the coupling result is closer to the real experimental value. The large stress and deformation of rotor under different flow conditions are mainly distributed on impeller and idler, and the stress concentration mainly occurs at the junction of front cover plate and blade outlet. Among the factors that affect the dynamic stress change of rotor, the pressure load takes a dominant position.

Core analysis of accident tolerant fuel cladding for SMART reactor under normal operation and rod ejection accident using DRAGON and PARCS

  • Pourrostam, A.;Talebi, S.;Safarzadeh, O.
    • Nuclear Engineering and Technology
    • /
    • v.53 no.3
    • /
    • pp.741-751
    • /
    • 2021
  • There has been a deep interest in trying to find better-performing fuel clad motivated by the desire to decrease the likelihood of the reactor barrier failure like what happened in Fukushima in recent years. In this study, the effect of move towards accident tolerant fuel (ATF) cladding as the most attracting concept for improving reactor safety is investigated for SMART modular reactor. These reactors have less production cost, short construction time, better safety and higher power density. The SiC and FeCrAl materials are considered as the most potential candidate for ATF cladding, and the results are compared with Zircaloy cladding material from reactor physics point of view. In this paper, the calculations are performed by generating PMAX library by DRAGON lattice physics code to be used for further reactor core analysis by PARCS code. The differential and integral worth of control and safety rods, reactivity coefficient, power and temperature distributions, and boric acid concentration during the cycle are analyzed and compared from the conventional fuel cladding. The rod ejection accident (REA) is also performed to study how the power changed in response to presence of the ATF cladding in the reactor core. The key quantitative finding can be summarized as: 20 ℃ (3%) decrease in average fuel temperature, 33 pcm (3%) increase in integral rod worth and cycle length, 1.26 pcm/℃ (50%) and 1.05 pcm/℃ (16%) increase in reactivity coefficient of fuel and moderator, respectively.

Design of a direct-cycle supercritical CO2 nuclear reactor with heavy water moderation

  • Petroski, Robert;Bates, Ethan;Dionne, Benoit;Johnson, Brian;Mieloszyk, Alex;Xu, Cheng;Hejzlar, Pavel
    • Nuclear Engineering and Technology
    • /
    • v.54 no.3
    • /
    • pp.877-887
    • /
    • 2022
  • A new reactor concept is described that directly couples a supercritical CO2 (sCO2) power cycle with a CO2-cooled, heavy water moderated pressure tube core. This configuration attains the simplification and economic potential of past direct-cycle sCO2 concepts, while also providing safety and power density benefits by using the moderator as a heat sink for decay heat removal. A 200 MWe design is described that heavily leverages existing commercial nuclear technologies, including reactor and moderator systems from Canadian CANDU reactors and fuels and materials from UK Advanced Gas-cooled Reactors (AGRs). Descriptions are provided of the power cycle, nuclear island systems, reactor core, and safety systems, and the results of safety analyses are shown illustrating the ability of the design to withstand large-break loss of coolant accidents. The resulting design attains high efficiency while employing considerably fewer systems than current light water reactors and advanced reactor technologies, illustrating its economic promise. Prospects for the design are discussed, including the ability to demonstrate its technologies in a small (~20 MWe) initial system, and avenues for further improvement of the design using advanced technologies.

Conceptual design of a MW heat pipe reactor

  • Yunqin Wu;Youqi Zheng;Qichang Chen;Jinming Li;Xianan Du;Yongping Wang;Yushan Tao
    • Nuclear Engineering and Technology
    • /
    • v.56 no.3
    • /
    • pp.1116-1123
    • /
    • 2024
  • -In recent years, unmanned underwater vehicles (UUV) have been vigorously developed, and with the continuous deepening of marine exploration, traditional energy can no longer meet the energy supply. Nuclear energy can achieve a huge and sustainable energy supply. The heat pipe reactor has no flow system and related auxiliary systems, and the supporting mechanical moving parts are greatly reduced, the noise is relatively small, and the system is simpler and more reliable. It is more favorable for the control of unmanned systems. The use of heat pipe reactors in unmanned underwater vehicles can meet the needs for highly compact, long-life, unmanned, highly reliable, ultra-quiet power supplies. In this paper, a heat pipe reactor scheme named UPR-S that can be applied to unmanned underwater vehicles is designed. The reactor core can provide 1 MW of thermal power, and it can operate at full power for 5 years. UPR-S has negative reactive feedback, it has inherent safety. The temperature and stress of the reactor are within the limits of the material, and the core safety can still be guaranteed when the two heat pipes are failed.

A Study on the Rupture Disk Design and Application at the Two Phase Flow by Runaway Reaction at Batch Reactor (회분식 반응기에서 반응폭주에 의한 2-Phase 흐름 파열판 설계 및 적용에 관한 연구)

  • Lee, Hyung-Sub;Yun, Hee-Chang
    • Journal of the Korean Institute of Gas
    • /
    • v.21 no.3
    • /
    • pp.1-8
    • /
    • 2017
  • The purpose of this study is to suggest the rupture disk design(size) and application at the two phase(gas-liquid) flow by runaway reaction at batch reactor. The definition of runaway reaction is abnormally exothermic reaction by the uncontrolled cooling water or deviated operating condition. As a result, the temperature of reactor is rapidly increasing. The causes of runaway reaction are either self-heating reaction or sleeper reaction. General methods of rupture disk size or safety valve are not suitable in the runaway reaction, because of temperature and pressure increasing rapidly in the reactor and the phases of relieving fluid is 2-phase flow. This study case of the reactor incident, the depressurization system such as safety valve and vent installed, however, the system did not relieved the pressure of reactor suitably. The orifice size of the safety valve were designed too small because the size had not been considered the phenomena and character of reaction. The batch reactor design should be considered by referring to the possibility of runaway reaction proposed in this study and the size of rupture disk design method considering 2-phase flow.