• Title/Summary/Keyword: Reactivity ratio

Search Result 249, Processing Time 0.031 seconds

Effects of Matrix Material Particle Size on Mullite Whisker Growth

  • Hwang, Jinsung;Choe, Songyul
    • Korean Journal of Materials Research
    • /
    • v.31 no.6
    • /
    • pp.313-319
    • /
    • 2021
  • Understanding of effects of changes in the particle size of the matrix material on the mullite whisker growth during the production of porous mullite is crucial for better design of new porous ceramics materials in different applications. Commercially, raw materials such as Al2O3/SiO2 and Al(OH)3/SiO2 are used as starting materials, while AlF3 is added to fabricate porous mullite through reaction sintering process. When Al2O3 is used as a starting material, a porous microstructure can be identified, but a more developed needle shaped microstructure is identified in the specimen using Al(OH)3, which has excellent reactivity. The specimen using Al2O3/SiO2 composite powder does not undergo mulliteization even at 1,400 ℃, but the specimen using the Al(OH)3/SiO2 composite powder had already formed complete mullite whiskers from the particle size specimen milled for 3 h at 1,100 ℃. As a result, the change in sintering temperature does not significantly affect formation of microstructures. As the particle size of the matrix materials, Al2O3 and Al(OH)3, decreases, the porosity tends to decrease. In the case of the Al(OH)3/SiO2 composite powder, the highest porosity obtained is 75 % when the particle size passes through a milling time of 3 h. The smaller the particle size of Al(OH)3 is and the more the long/short ratio of the mullite whisker phase decreases, the higher the density becomes.

Rapid and Visual Detection of Vibrio parahaemolyticus in Aquatic Foods Using blaCARB-17 Gene-Based Loop-Mediated Isothermal Amplification with Lateral Flow Dipstick (LAMP-LFD)

  • Hu, Yuan-qing;Huang, Xian-hui;Guo, Li-qing;Shen, Zi-chen;LV, Lin-xue;Li, Feng-xia;Zhou, Zan-hu;Zhang, Dan-feng
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.12
    • /
    • pp.1672-1683
    • /
    • 2021
  • Vibrio parahaemolyticus is recognized as one of the most important foodborne pathogens responsible for gastroenteritis in humans. The blaCARB-17 gene is an intrinsic β-lactamase gene and a novel species-specific genetic marker of V. parahaemolyticus. In this study, a loop-mediated isothermal amplification (LAMP) assay combined with a lateral flow dipstick (LFD) was developed targeting this blaCARB-17 gene. The specificity of LAMP-LFD was ascertained by detecting V. parahaemolyticus ATCC 17802 and seven other non-V. parahaemolyticus strains. Finally, the practicability of LAMP-LFD was confirmed by detection with V. parahaemolyticus-contaminated samples and natural food samples. The results showed that the optimized reaction parameters of LAMP are as follows: 2.4 mmol/l Mg2+, 0.96 mmol/l dNTPs, 4.8 U Bst DNA polymerase, and an 8:1 ratio of inner primer to outer primer, at 63℃ for 40 min. The optimized reaction time of the LFD assay is 60 min. Cross-reactivity analysis with the seven non-V. parahaemolyticus strains showed that LAMP-LFD was exclusively specific for V. parahaemolyticus. The detection limit of LAMP-LFD for V. parahaemolyticus genomic DNA was 2.1 × 10-4 ng/μl, corresponding to 630 fg/reaction and displaying a sensitivity that is 100-fold higher than that of conventional PCR. LAMP-LFD in a spiking study revealed a detection limit of approximately 6 CFU/ml, which was similar with conventional PCR. The developed LAMP-LFD specifically identified the 10 V. parahaemolyticus isolates from 30 seafood samples, suggesting that this LAMP-LFD may be a suitable diagnostic method for detecting V. parahaemolyticus in aquatic foods.

Nanosulfated Silica as a Potential Heterogeneous Catalyst for the Synthesis of Nitrobenzene

  • Khairul Amri;Aan Sabilladin;Remi Ayu Pratika;Ari Sudarmanto;Hilda Ismail;Budhijanto;Mega Fia Lestari;Won-Chun Oh;Karna Wijaya
    • Korean Journal of Materials Research
    • /
    • v.33 no.7
    • /
    • pp.265-272
    • /
    • 2023
  • In this study, the synthesis of nitrobenzene was carried out using sulfated silica catalyst. The study delved into H2SO4/SiO2 as a solid acid catalyst and the effect of its weight variation, as well as the use of a microwave batch reactor in the synthesis of nitrobenzene. SiO2 was prepared using the sol-gel method from TEOS precursor. The formed gel was then refluxed with methanol and calcined at a temperature of 600 ℃. SiO2 with a 200-mesh size was impregnated with 98 % H2SO4 by mixing for 1 h. The resulting 33 % (w/w) H2SO4/SiO2 catalyst was separated by centrifugation, dried, and calcined at 600 ℃. The catalyst was then used as a solid acid catalyst in the synthesis of nitrobenzene. The weights of catalyst used were 0.5; 1; and 1.5 grams. The synthesis of nitrobenzene was carried out with a 1:3 ratio of benzene to nitric acid in a microwave batch reactor at 60 ℃ for 5 h. The resulting nitrobenzene liquid was analyzed using GC-MS to determine the selectivity of the catalyst. Likewise, the use of a microwave batch reactor was found to be appropriate and successful for the synthesis of nitrobenzene. The thermal energy produced by the microwave batch reactor was efficient enough to be used for the nitration reaction. Reactivity and selectivity tests demonstrated that 1 g of H2SO4/SiO2 could generate an average benzene conversion of 40.33 %.

Advancing the Frontier in Alkaline Promoter Performance Evaluation: Exploring Simplified Adoption Methods (알칼리 촉진제 성능 측정의 새로운 전환점: 도입 방식의 단순화를 통한 탐구)

  • Wonjoong Yoon;Jiyeon Lee;Jaehoon Kim
    • Clean Technology
    • /
    • v.30 no.1
    • /
    • pp.62-67
    • /
    • 2024
  • In this study, an alkali metal Na was introduced into iron-based catalysts used in the carbon dioxide-based Fischer-Tropsch process by wet impregnation and physical mixing methods to compare their performance. The as-prepared catalysts were evaluated for reactivity at 3.5 MPa, 330 ℃, feed ratio of H2/CO2 = 3 with a space velocity of 4,000 mL h-1 gcat-1. Comparing the two catalysts, it was found that Na was uniformly distributed throughout the catalyst when wet-impregnated, but Na for physically mixed catalyst was relatively located on the surface of the catalyst. In addition, the wet-impregnated catalyst showed higher liquid hydrocarbon (C5+) yield and lower CO selectivity. In conclusion, the effect of Na distribution in the catalyst on the reaction was identified and can be controlled by the introduction method.

Preparation of Birnessite (δ-MnO2) from Acid Leaching Solution of Spent Alkaline Manganese Batteries and Removals of 1-naphthol (폐 알칼리망간전지의 산 침출액으로부터 버네사이트(δ-MnO2)의 제조 및 1-naphthol 제거)

  • Eom, Won-Suk;Lee, Han-Saem;Rhee, Dong-Seok;Shin, Hyun-Sang
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.38 no.11
    • /
    • pp.603-610
    • /
    • 2016
  • This work studies the synthesis of birnessite (${\delta}-MnO_2$), a catalyst of oxidative-coupling reactions, from the powder of spent alkaline manganese batteries (SABP, <8 mesh) and evaluate its reactivity for 1-naphthol (1-NP) removals. Manganese oxides using commercial reagents ($MnSO_4$, $MnCl_2$) and the acid birnessite (A-Bir) by McKenzie method were also synthesized, and their crystallinity and reactivity for 1-NP were compared with one another. 96% Mn and 98% Zn were extracted from SABP by acid leaching at the condition of solid/liquid (S/L) ratio 1:10 in $1.0M\;H_2SO_4+10.5%\;H_2O_2$ at $60^{\circ}C$. From the acid leaching solution, 69% (at pH 8) and 94.3% (pH>13) of Mn were separated by hydroxide precipitation. Optimal OH/Mn mixing ratio (mol/mol) for the manganese oxide (MO) synthesis by alkaline (NaOH) hydrothermal techniques was 6.0. Under this condition, the best 1-NP removal efficiency was observed and XRD analysis confirmed that the MOs are corresponding to birnessite. Kinetic constants (k, at pH 6) for the 1-NP removals of the birnessites obtained from Mn recovered at pH 8 (${Mn^{2+}}_{(aq)}$) and pH>13 ($Mn(OH)_{2(s)}$) are 0.112 and $0.106min^{-1}$, respectively, which are similar to that from $MnSO_4$ reagent ($0.117min^{-1}$). The results indicated that the birnessite prepared from the SABP as a raw material could be used as an oxidative-coupling catalyst for removals of trace phenolic compounds in soil and water, and propose the recycle scheme of SAB for the birnessite synthesis.

Preparation and Reactivity of Cu-Zn-Al Based Hybrid Catalysts for Direct Synthesis of Dimethyl Ether by Physical Mixing and Precipitation Methods (물리혼합 및 침전법에 의한 DME 직접 합성용 Cu-Zn-Al계 혼성촉매의 제조 및 반응특성)

  • Bang, Byoung Man;Park, No-Kuk;Han, Gi Bo;Yoon, Suk Hoon;Lee, Tae Jin
    • Korean Chemical Engineering Research
    • /
    • v.45 no.6
    • /
    • pp.566-572
    • /
    • 2007
  • Two hybrid catalysts for the direct synthesis of DME were prepared and the catalytic activity of these catalysts were investigated. The hybrid catalyst for the direct synthesis of DME was composed as the catalytic active components of methanol synthesis and dehydration. The methanol synthesis catalyst was formed from the precursor contained Cu and Zn, the methanol dehydration catalyst was used ${\gamma}-Al_2O_3$. As PM-CZ+D and CP-CZA/D, Two hybrid catalysts were prepared by physical mixing method (PM-CZ+D) and precipitation method (CP-CZA/D), respectively. PM-CZ+D was prepared by physically mixing methanol synthesis catalyst and methanol dehydration catalyst, CP-CZA/D was prepared by depositing Cu-Zn or Cu-Zn-Al components on ${\gamma}-Al_2O_3$. The crystallinity and the surface morphology of synthesized catalyst were analyzed by X-ray diffraction (XRD) and scanning electron microscope (SEM) to investigate the physical property of prepared catalyst. And BET surface area by $N_2$ adsorption and the surface area of Cu by $N_2O$ chemisorption were investigated about the hybrid catalysts. In addition, catalytic activity of these hybrid catalysts was examined with varying reaction conditions. At that time, the reaction temperature of $250{\sim}290^{\circ}C$, the reaction pressure of 50~70 atm, the $[H_2]/[CO]$ mole ratio of 0.5~2.0 and the space velocity of $1,500{\sim}6,000h^{-1}$ were investigated the catalytic activity. From these results, it was confirmed that the reactivity of CP-CZA/D was higher than that of PM-CZ+D. When the conditions of reaction temperature, pressure, $[H_2]/[CO]$ ratio and space velocity were $260^{\circ}C$, 50 atm and 1.0, $3,000h^{-1}$ respectively, CO conversion using CP-CZA/D hybrid catalyst was 72% and the CO conversion of CP-CZA/D was more than 20% compared with the CO conversion of PM-CZ+D. It was known that Cu surface area of CP-CZA/D hybrid catalyst was higher than that of hybrid PM-CZ+D catalyst using $N_2O$ chemisorption. It was assumed that the catalytic activity was improved because Cu particle of hybrid catalyst prepared by precipitation method was well dispersed.

Analysis on Ignition Characteristics According to the Chemical Composition of Bio Jet Fuel Synthesized by F-T Process (F-T 공정으로 합성된 바이오항공유의 화학적 조성에 따른 점화특성 분석)

  • Kang, Saetbyeol
    • Clean Technology
    • /
    • v.26 no.3
    • /
    • pp.204-210
    • /
    • 2020
  • In this study, the ignition characteristics of bio jet fuel (Bio-7629, Bio-5172) produced by F-T process and petroleum-based jet fuel (Jet A-1) were compared and analyzed. The ignition delay time of each fuel was measured by means of a combustion research unit (CRU) and the results were explained through an analysis of the properties and composition of the fuel. The ignition delay time of Bio-5172 was the shortest while that of Jet A-1 was the longest because Jet A-1 had the highest surface tension and Bio-5172 had the lowest viscosity in terms of fuel properties that could affect the physical ignition delay time. As a result of the analysis of the constituents' type and ratio, 22.8% aromatic compounds in Jet A-1 could generate benzyl radical, which had low reactivity during the oxidation reaction, affecting the increase of ignition delay time. Both Bio-7629 and Bio-5172 were composed of paraffin only, with the ratio of n-/iso- being 0.06 and 0.80, respectively. The lower the degree of branching is in paraffin, the faster the isomerization of peroxy radical is produced during oxidation, which could determine the propagation rate of the ignition. Therefore, Bio-5172, composed of more n-paraffin, possesses shorter ignition delay time compared with Bio-7629.

The Strength Characteristics of Activated Multi-Component Cement with Kaolinite (카올린을 혼합한 활성화된 다성분계 시멘트의 강도 특성)

  • Kim, Tae-Wan;Kim, Im-Gon
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.5
    • /
    • pp.593-600
    • /
    • 2016
  • The paper presented investigates the effects of kaolinite on strength properties of alkali-activated multi-component cement. The binders of this study was blended of ground granulated blast furnace slag (GGBFS), fly ash (FA), silica fume (SF) and kaolinite (KA). In this study, the specimens of combination of 20%~70% GGBFS, 10%~60% FA, 10% SF (constant ratio) and 10%~50% KA binder were used for strength properties tests. The water/binder ratio was 0.5. The binders (GGBFS + FA + SF + KA) was activated by sodium hydroxide (NaOH) and sodium silicate ($Na_2SiO_3$) was 10% by total binder weight (10% NaOH + 10% $Na_2SiO_3$). The research carried out is on the compressive strength, water absorption, ultrasonic pulse velocity (UPV) and X-ray diffraction (XRD). The compressive strength decreased as the contents of KA increase. One of the major reason for this is the low reactivity of KA compared with other raw materials used as precursors such as GGBFS or FA. The presence of remaining KA indicates that the initially used quantity has not fully reacted during hydration. Moreover, the results have indicated that increased of KA contents decreased UPV under all experimental conditions. The drying shrinkage and water absorption increased as the content of KA increase. Test result clearly showed that the strength development of multi-component blended cement were significantly dependent on the content of KA and GGBFS.

Studies on the Applicability of Various Antigen Preparations in the Immunoblot Diagnosis of Cysticercosis (Immunoblot법을 이용한 낭미충증(囊尾蟲症)진단에 있어서 각종 항원(抗原)의 적용가능성(適用可能性) 검토(檢討)에 관한 연구(硏究))

  • Koh, Young-Tae;Joo, Kyoung-Hwan;Chung, Myung-Sook;Rim, Han-Jong
    • Journal of agricultural medicine and community health
    • /
    • v.16 no.1
    • /
    • pp.79-89
    • /
    • 1991
  • A systematic study was conducted to identify and isolate a serologically pertinent antigen with high specific activity and low cross reactivity from Cysticercus parenchymal antigen. Differential centrifugation of the homogenate yield three particulate and one soluble fractions ; the $480{\times}G$ pellets($CyL_2$), the $7650{\times}G$ pellet($CyL_3$), the $100000{\times}G$ pellet($CyL_4$), and $100000{\times}G$ supernatant($CyL_6$). We compared antigenicity of these antigens to that or cystic fluid antigens($CyF_1$), saline extract of cystic wall($CyL_1$), and n-butanol treated $GyL_4$ antigen ($CyL_6$) based on SDS-PAGE and immunoblot techniques. The data obtained were as follows : 1) The ratio of O.D. value of ELISA against cysticercosis positive pool sera to that of negative pool sera was highest when using $CyF_1$ as antigen. However the ratio was relatively low in case of $CyL_{3.4}$ and $CyL_5$. 2) We have noted in previous paper that most strong antigenic activities are present in 63Kd band with low cross reactivities. An effective serologic reagent must contain components that are recognized by most infected sera. 63Kd band met this criteria and could be considered as a reliable band for the diagnosis of cysticercosis. As far as 63Kd band concern, $CyL_5$ showed most strong activities without disturbance of cross reaction by EITB in spite of low applicability to microplate ELISA. 3) $CyL_5$ could detect the serum antibody of cysticercosis even in very low titers, around cut-off values of microplate ELISA, by immunoblot. It also could detect the cross reactivities of Echinococcus species, which showed high absorbance value in micro plate ELISA and some sparganosis cases. Further purification of this antigen will be able to represents a antigen that can be used in the diagnosis of cysticercosis.

  • PDF

2,4-Dinitrochlorobenzene-induced Atopic Dermatitis Like Immune Alteration in Mice (마우스에서 2,4-Dinitrochlorobenzene을 이용한 아토피성 피부염 발현 관련 면역지표치 분석)

  • Lee, Seung-Hye;Baek, Seong-Jin;Kim, Hyoung-Ah;Heo, Yong
    • Toxicological Research
    • /
    • v.22 no.4
    • /
    • pp.357-364
    • /
    • 2006
  • This study was undertaken to develop a reliable mice model demonstrating similar immunologic phenomena as human atopic dermatitis characterized with predominance of type-2 immune response. BALB/C mice and NC/Nga mice were sensitized twice with $100{\mu}l$ of 1% 2,4-dinitrochlorobenzene (DNCB) or vehicle (acetone : olive oil=4:1 mixture) in a week and challenged twice with $100{\mu}l$ of 0.2% DNCB or the vehicle at the following week. Mice were sacrificed at 19 days following the second DNCB or vehicle challenge for NC/Nga mice and at 28 days following the second DNCB or vehicle challenge for BALB/c mice. Upregulation of plasma 1gE, a hallmark of atopic dermatitis occurrence, was evident in the plasma obtained 4 day after the second DNCB challenge from BALB/c mice (approximately 4-fold) and NC/Nga mice (approximately 6-fold) treated with DNCB in comparison with that of the vehicle treated-control mice, and remain higher $3{\sim}4$ week after the second challenge. Ratio of plasma IgG1 versus IgG2a concentration was significantly higher in the mice treated with DNCB than the control mice, which also implies the skewed type-2 reactivity in vivo. Ratio of interleukin-4 versus interferon gamma produced in the splenic T cell culture supernatants was approximately 3-fold higher in the both strains of mice treated with DNCB than their control mice, respectively. The DNCB-treated mice demonstrated atopic dermatitis-like skin legions characterized with erythma, scaling, and hemorrhage, which was not observed with the control mice. Scratching on face or dorsal area was significantly more frequent (approximately 25-fold) in the DNCB-treated mice than the control at next day of the second DNCB challenge, and scratching frequency remains higher (approximately 4-fold) in the mice treated with DNCB than the control at 14 day following the second DNCB challenge. Overall, the mice model developed through sensitization and challenge with DNCB may be useful for research on atopic dermatitis and development of treatment materials for atopic dermatitis.