• 제목/요약/키워드: Reactivity control

검색결과 298건 처리시간 0.022초

CANDU-PHWR의 증분단면적 계산방법에 대한 연구 (Incremental Cross Sections for CANDU-PHWR Core Analysis)

  • Hang Bok Choi;Seong Yun Kim;Chang Hyun Chung
    • Nuclear Engineering and Technology
    • /
    • 제17권2호
    • /
    • pp.98-104
    • /
    • 1985
  • 가압중수로인 CANDU의 노심에는 많은 반응도 조절장치들이 분포되어 있어 출력분포와 잉여반응도를 조절하며, 이러한 장치들의 효자는 노심해서에서 증분격자상수로 나타낸다. 격자코드인 WIMS를 사용하여 2군 군정수를 계산하고 이를 이용하여 SUPERCELL코드로 증분 격자상수를 생산하였다. 증분격자상수는 조정봉과 지역조절장치에 대해 노심해석을 통해 평가하였으며 반응도가와 채널출력을 참고 자료와 비교하였다. 반응도가와 최대채널출력 오차가 참고값에 대해 각각 0.97%와 0.6% 범위 내에서 나타났다.

  • PDF

A Study on Reusable Metal Component as Burnable Absorber Through Monte Carlo Depletion Analysis

  • Muth, Boravy;Alrawash, Saed;Park, Chang Je;Kim, Jong Sung
    • 방사성폐기물학회지
    • /
    • 제18권4호
    • /
    • pp.481-496
    • /
    • 2020
  • After nuclear power plants are permanently shut down and decommissioned, the remaining irradiated metal components such as stainless steel, carbon steel, and Inconel can be used as neutron absorber. This study investigates the possibility of reusing these metal components as neutron absorber materials, that is burnable poison. The absorption cross section of the irradiated metals did not lose their chemical properties and performance even if they were irradiated over 40-50 years in the NPPs. To examine the absorption capability of the waste metals, the lattice calculations of WH 17×17 fuel assembly were analyzed. From the results, Inconel-718 significantly hold-down fuel assembly excess reactivity compared to stainless steel 304 and carbon steel because Inconel-718 contains a small amount of boron nuclide. From the results, a 20wt% impurity of boron in irradiated Inconel-718 enhances the excess reactivity suppression. The application of irradiated Inconel-718 as a burnable absorber for SMR core was investigated. The irradiated Inconel-718 impurity with 20wt% of boron content can maintain and suppress the whole core reactivity. We emphasize that the irradiated metal components can be used as burnable absorber materials to control the reactivity of commercial reactor power and small modular reactors.

Selection of burnable poison in plate fuel assembly for small modular marine reactors

  • Xu, Shikun;Yu, Tao;Xie, Jinsen;Li, Zhulun;Xia, Yi;Yao, Lei
    • Nuclear Engineering and Technology
    • /
    • 제54권4호
    • /
    • pp.1526-1533
    • /
    • 2022
  • Small modular reactors have garnered considerable attention in the recent years. Plate fuel elements exhibit a good application prospect in small modular pressurized water reactors for marine applications. Further, improved economic benefits can be achieved by extending the core lifetime of small modular reactors. However, it is necessary to realize a large initial residual reactivity for achieving a relatively long burnup depth finally. Thus, the selection of a suitable burnable poison (BP) is a crucial factor that should be considered in the design of small modular reactors. In this study, some candidate BPs are selected to realize the effective control of reactivity. The results show that 231Pa2O3, 240Pu2O3, 167Er2O3, PACS-J, and PACS-L are ideal candidates of BP, and since the characteristics of BP can increase the final burnup depth of assembly, the economic benefits are gained. Additionally, an optimal combination scheme of BPs is established. Specifically, it is proved that through a reasonable combination of BPs, a low reactivity fluctuation during the lifetime can be achieved, leading to a large final burnup depth.

Burnable Absorber Design Study for a Passively-Cooled Molten Salt Fast Reactor

  • Nariratri Nur Aufanni;Eunhyug Lee;Taesuk Oh;Yonghee Kim
    • Nuclear Engineering and Technology
    • /
    • 제56권3호
    • /
    • pp.900-906
    • /
    • 2024
  • The Passively-Cooled Molten Salt Fast Reactor (PMFR) is one of the advanced design concepts of the Molten Salt Fast Reactor (MSFR) which utilizes a natural circulation for the primary loop and aims to attain a long-life operation without any means of fuel reprocessing. For an extended operation period, it is necessary to have enough fissile material, i.e., high excess reactivity, at the onset of operation. Since the PMFR is based on a fast neutron spectrum, direct implementation of a burnable absorber concept for the control of excess reactivity would be ineffective. Therefore, a localized moderator concept that encircles the active core has been envisioned for the PMFR which enables the effective utilization of a burnable absorber to achieve low reactivity swing and long-life operation. The modified PMFR design that incorporates a moderator and burnable absorber is presented, where depletion calculation is performed to estimate the reactor lifetime and reactivity swing to assess the feasibility of the proposed design. All the presented neutronic analysis has been conducted based on the Monte Carlo Serpent2 code with ENDF/B-VII.1 library.

Nuclear Design Feasibility of the Soluble Boron Free PWR Core

  • Kim, Jong-Chae;Kim, Myung-Hyun;Lee, Un-Chul;Kim, Young-Jin
    • Nuclear Engineering and Technology
    • /
    • 제30권4호
    • /
    • pp.342-352
    • /
    • 1998
  • A nuclear design feasibility of soluble boron free(SBF core for the medium-sized(600MWe) PWR was investigated. The result conformed that soluble boron free operation could be performed by using current PWR proven technologies. Westinghouse advanced reactor, AP-600 was chosen as a design prototype. Design modification was applied for the assembly design with burnable poison and control rod absorber material. In order to control excess reactivity, large amount of gadolinia integral burnable poison rods were used and B4C was used as a control rod absorber material. For control of bottom shift axial power shape due to high temperature feedback in SBF core, axial zoning of burnable poison was applied to the fuel assemblies design. The combination of enrichment and rod number zoning for burnable poison could make an excess reactivity swing flat within around 1% and these also led effective control on axial power offset and peak pin power, The safety assessment of the designed core was peformed by the calculation of MTC, FTC and shutdown margin. MTC in designed SBF core was greater around 6 times than one of Ulchin unit 3&4. Utilization of enriched BIO(up to 50w1o) in B4C shutdown control rods provided enough shutdown margin as well as subcriticality at cold refueling condition.

  • PDF

우황청심원(牛黃淸心元)이 정상인의 혈압(血壓), 맥박수(脈搏數), 뇌혈류(腦血流) 및 뇌혈관반응도(腦血管反應度)에 미치는 영향(影響) (Effects of Uwhangchungsim-won(Niuhuangqingxin-yuan) on Systemic Blood Pressure, Pulse Rate, Cerebral Blood Flow, and Cerebrovascular Reactivity in Humans)

  • 윤상필;이상호;김은주;나병조;정동원;신원준;문상관;배형섭;김이동
    • 대한한방내과학회지
    • /
    • 제25권3호
    • /
    • pp.440-450
    • /
    • 2004
  • Objectives: Uwhangchungsim-won(UC) has been used in the treatment of a wide variety of conditions including stroke, hypertension, arterosclerosis, autonomic imbalance, and mental instability, in Korean traditional hospitals. The aim of this study was to evaluate the effect of DC on cerebral hemodynamics and to determine the appropriate dosage. Methods: We studied changes in hyperventilation-induced cerebrovascular reactivity and mean blood flow velocity of the middle cerebral arteries(MCAs) were studied by means of transcranial Doppler ultrasound. Changes in mean blood pressure, pulse rate and expiratory CO2(PECO2) were observed using Cardiocap TM/5. Six healthy young volunteers who were administrated with full doses of DC for group A, and half doses for group B. Six other healthy subjects comprised the control group. The evaluation was performed during basal condition, and repeated at 20, 40, 60, 120, and 180 minutes after administration. Results: Increases of cerebrovascular reactivity and mean blood flow velocity in the middle cerebral artery in group A were significantly different compared with group B and the control group (p<0.1). Mean blood pressure, pulse rate and expiratory CO2 did not change during the observation and were not different among these three groups. We observed that in cerebrovascular reactivity induced hyperventilation, group A was most effective at 40 minutes after administration, and its effectiveness lasted for 120 minutes. Conclusions: This study provides evidence for UC, in full doses, as an agent for dilation of the cerebral arteriols to increase hyperventilation-induced cerebrovascular reactivity as a consequence of faster recovery of blood flow velocity.

  • PDF

ATWS Performance of KALIMER Uranium Metal Core

  • Dohee Hahn;Kim, Young C.
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 1996년도 춘계학술발표회논문집(2)
    • /
    • pp.592-597
    • /
    • 1996
  • The KALIMER core, of which nuclear design is largely governed by inherent safety and reactivity control issues, is fueled with metallic fuel, and the initial core will be loaded with 20% enriched Uranium metal fuel. KALIMER safety design objectives include the accommodation of unprotected, ATWS events without operator action, and without the support of active shutdown, shutdown heat removal, or any automatic system without damage to the plant and without jeopardizing public safety. The transient analysis of the core designs has been focused on severe events to assess the margins in the design, and ATWS events are the most severe events that must be accommodated by the KALIMER design. The ATWS performance has been evaluated for the preliminary initial core design of KALIMER with a particular emphasis on the inherent negative reactivity feedback effects, including the Doppler, sodium density, fuel axial expansion, core radial expansion, and control rod driveline expansion. Results show that the Uranium metal core design meets the temperature limits with margin.

  • PDF

Analysis of Control Element Assembly Withdrawal at Full Power Accident Scenario Using a Hybrid Conservative and BEPU Approach

  • Kajetan Andrzej Rey;Jan Hruskovic;Aya Diab
    • Nuclear Engineering and Technology
    • /
    • 제55권10호
    • /
    • pp.3787-3800
    • /
    • 2023
  • Reactivity Initiated Accident (RIA) scenarios require special attention using advanced simulation techniques due to their complexity and importance for nuclear power plant (NPP) safety. While the conservative approach has traditionally been used for safety analysis, it may lead to unrealistic results which calls for the use of best estimate plus uncertainty (BEPU) approach, especially with the current advances in computational power which makes the BEPU analysis feasible. In this work an Uncontrolled Control Element Assembly (CEA) Withdrawal at Full Power accident scenario is analyzed using the BEPU approach by loosely coupling the thermal hydraulics best-estimate system code (RELAP5/SCDAPSIM/MOD3.4) to the statistical analysis software (DAKOTA) using a Python interface. Results from the BEPU analysis indicate that a realistic treatment of the accident scenario yields a larger safety margin and is therefore encouraged for accident analysis as it may enable more economic and flexible operation.

A comparative study on the impact of Gd2O3 burnable neutron absorber in UO2 and (U, Th)O2 fuels

  • Uguru, Edwin Humphrey;Sani, S.F.Abdul;Khandaker, Mayeen Uddin;Rabir, Mohamad Hairie;Karim, Julia Abdul
    • Nuclear Engineering and Technology
    • /
    • 제52권6호
    • /
    • pp.1099-1109
    • /
    • 2020
  • The performance of gadolinium burnable absorber (GdBA) for reactivity control in UO2 and (U, Th)O2 fuels and its impact on spent fuel characteristics was performed. Five fuel assemblies: one without GdBA fuel rod and four each containing 16, 24, 34 and 44 GdBA fuel rods in both fuels were investigated. Reactivity swing in all the FAs with GdBA rods in UO2 fuel was higher than their counterparts with similar GdBA fuel rods in (U, Th)O2 fuel. The excess reactivity in all FAs with (U, Th)O2 fuel was higher than UO2 fuel. At the end of single discharge burn-up (~ 49.64 GWd/tHM), the excess reactivity of (U, Th) O2 fuel remained positive (16,000 pcm) while UO2 fuel shows a negative value (-6,000 pcm), which suggest a longer discharge burn-up in (U, Th)O2 fuel. The concentration of plutonium isotopes and minor actinides were significantly higher in UO2 fuel than in (U, Th)O2 fuel except for 236Np. However, the concentration of non-actinides (gadolinium and iodine isotopes) except for 135Xe were respectively smaller in (U, Th)O2 fuel than in UO2 fuel but may be two times higher in (U, Th)O2 fuel due to its potential longer discharge burn-up.