• Title/Summary/Keyword: Reactive-templated grain growth

Search Result 4, Processing Time 0.017 seconds

Piezoelectric properties of (Bi0.5Na0.5)TiO3-BaTiO3 ceramics prepared by reactive templated grain growth method (Reactive Templated Grain Growth법에 의해 제조된 (Bi0.5Na0.5)TiO3-BaTiO3 세라믹스의 압전 특성)

  • Ahn, Byung-Guk
    • Journal of Sensor Science and Technology
    • /
    • v.16 no.3
    • /
    • pp.234-239
    • /
    • 2007
  • Crystallographically {h00}-oriented $0.94(Bi_{0.5}Na_{0.5})TiO_{3}-0.06BaTiO_{3}$ (0.94BNT-0.06BT) ceramics was prepared by the Reactive Templated Grain Growth (RTGG) method using the $Bi_{4}Ti_{3}O_{12}$ template. The sheets prepared by tape-casting of slurries containing the templates and starting materials are cut, laminated, and pressed. Then burn-out and sintering was conducted. Also, to compare with the 0.94BNT-0.06BT ceramics prepared by the RTGG method another 0.94BNT-0.06BT ceramics was prepared by the solid-state method. In the optimum of this experiments range, the degree of orientation of the 0.94BNT-0.06BT ceramics prepared by the RTGG method was texture fraction${\approx}92%$ and the piezoelectric constant($d_{33}$) and coupling factor($k_{p}$) was obtained to $d_{33}{\approx}205{\;}pC/N$, $k_{p}{\approx}0.33%$, respectively.

Preparation of Textured Bi0.5(Na,K)0.5TiO3-BiFeO3 Solid Solutions by Reactive-Templated Grain Growth Process

  • Kato, Kyoko;Kimura, Toshio
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.11 s.294
    • /
    • pp.693-699
    • /
    • 2006
  • Textured $Bi_{0.5}(Na,K)_{0.5}TiO_3-BiFeO_3$ ceramics were prepared by the reactive-templated grain growth process, using platelike $Bi_4Ti_3O_{12}$ particles. The effects of chemical composition in $Bi_{0.5}(Na,K)_{0.5}TiO_3$ on texture development and densification were examined. Textured ceramics were obtained by using $Bi_{0.5}K_{0.5}TiO_3$ as an end member of the solid solution but densification was limited. Dense ceramics were obtained by using $Bi_{0.5}Na_{0.5}TiO_3$ but texture did not develop. Dense, textured ceramics were obtained by using $Bi_{0.5}(Na_{0.5}K_{0.5})_{0.5}TiO_3$.

Strategies of A Potential Importance, Making Lead-Free Piezoceramics Truly Alternative to PZTs

  • Kim, Hwang-Pill;Ahn, Chang Won;Hwang, Younghun;Lee, Ho-Yong;Jo, Wook
    • Journal of the Korean Ceramic Society
    • /
    • v.54 no.2
    • /
    • pp.86-95
    • /
    • 2017
  • Active search for lead-free piezoceramics over the last decade has harvested a considerable amount of achievements both in theory and in practice. Few would deny that those achievements are highly beneficial, but agree that this quest of developing the lead-free piezoceramics in replace for PZTs is successfully completed. Nevertheless, few would clearly state where this quest should be directed in our next move. A source of this uncertainty may originate from the fact that it is still not clear how good is good enough to beat PZTs. In this short review, we analyzed the existing literature data to clearly locate the current state of the art of lead-free piezoceramics in comparison to PZT-based piezoceramics. Four strategies of a potential importance were suggested and discussed to help researchers plan and design their future research on lead-free piezoceramics with a recently reported exemplary work.