• Title/Summary/Keyword: Reactive power loss

Search Result 108, Processing Time 0.021 seconds

A Study on the Effective Enhancement of the Load Power Factor Using the Load Power Factor Sensitivity of Generation Cost (부하역률 감도기법 적용에 의한 효율적인 부하역률 개선에 관한 연구)

  • Lee Byung Ha;Kim Jung-Hoon
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.54 no.1
    • /
    • pp.18-24
    • /
    • 2005
  • Various problems such as the increase of the power loss and the voltage instability may often occur in the case of low load power factor. The demand of reactive power increases continuously with the growth of active power and the restructuring of electric power companies makes the comprehensive management of reactive power a troublesome problem, so that the systematic control of load power factor is required. In this paper, the load power factor sensitivity of the generation cost is derived and it is used for determining the locations of reactive power compensation devices effectively and for enhancing the load power factor appropriately. In addition, the voltage variation penalty cost is introduced and the integrated costs including the voltage variation penalty cost are used for determining the value of the load power factor from the point of view of the economic investment and voltage regulation. It is shown through the application to a large-scale power system that the load power factor can be enhanced effectively and appropriately using the load power factor sensitivity and integrated costs.

Multiobjective Optimal Reactive Power Flow Using Elitist Nondominated Sorting Genetic Algorithm: Comparison and Improvement

  • Li, Zhihuan;Li, Yinhong;Duan, Xianzhong
    • Journal of Electrical Engineering and Technology
    • /
    • v.5 no.1
    • /
    • pp.70-78
    • /
    • 2010
  • Elitist nondominated sorting genetic algorithm (NSGA-II) is adopted and improved for multiobjective optimal reactive power flow (ORPF) problem. Multiobjective ORPF, formulated as a multiobjective mixed integer nonlinear optimization problem, minimizes real power loss and improves voltage profile of power grid by determining reactive power control variables. NSGA-II-based ORPF is tested on standard IEEE 30-bus test system and compared with four other state-of-the-art multiobjective evolutionary algorithms (MOEAs). Pareto front and outer solutions achieved by the five MOEAs are analyzed and compared. NSGA-II obtains the best control strategy for ORPF, but it suffers from the lower convergence speed at the early stage of the optimization. Several problem-specific local search strategies (LSSs) are incorporated into NSGA-II to promote algorithm's exploiting capability and then to speed up its convergence. This enhanced version of NSGA-II (ENSGA) is examined on IEEE 30 system. Experimental results show that the use of LSSs clearly improved the performance of NSGA-II. ENSGA shows the best search efficiency and is proved to be one of the efficient potential candidates in solving reactive power optimization in the real-time operation systems.

The Analysis and Evaluation of the Disturbances and Controller Effects to Power System Dynamic Voltage Stability Design and Control (동적전압붕괴에 대한 외란의 영향평가 및 제어기기 적용 효과 분석)

  • Lee, Geun-Jun
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.49 no.1
    • /
    • pp.6-12
    • /
    • 2000
  • This paper presents various processes of dynamic voltage collapse which is initiated by various power system disturbances, and the impacts of dynamic voltage controllers. According to the analysis results, the composition of induction motors with short time constants affects the voltage collapse strongly. Also, it is proved that the addition of fast acting reactive compensation devices, such as SVC, at high reactive loss sensitivity($$\delta$$Q$$_luss/\delta$$P$$_L$$) buses could be one of the best countermeasure to escape the voltage collapse.

  • PDF

The Reactive Power Compensation for a Feeder by Control of the Power Factor of PWM Converter Trains (PWM 컨버터 차량의 역률 제어를 통한 급전선로의 무효전력 보상)

  • Kim, Ronny Yongho;Kim, Baik
    • Journal of the Korean Society for Railway
    • /
    • v.17 no.3
    • /
    • pp.171-177
    • /
    • 2014
  • PWM converter trains exhibit excellent load characteristics in comparison with conventional phase-controlled trains with low power factors, as they can be operated at power factors which are close to unity by means of a voltage vector control method. However, in the case of a high track density or extended feeding, significant line losses and voltage drops can occur. Instead of operating these trains at a fixed unity power factor, this paper suggests a continuous optimal power factor control scheme for each train in an effort to minimize line losses and improve voltage drops according to varying load conditions. The proposed method utilizes the steepest descent algorithm targeting each car in the same feeding section to establish the optimized reactive power compensation levels that can minimize the reactive power loss of the feeder. The results from a simulation of a sample system show that voltage drops can be improved and line losses decreased.

무효전력 최적제어에 의한 전력손실의 최소화

  • Lee, Hyeong-Gwan
    • ETRI Journal
    • /
    • v.6 no.4
    • /
    • pp.31-36
    • /
    • 1984
  • This paper presents an efficient method for real power loss minimization and for improvements in voltage profiles. This method is accomplished by optimal control of reactive power in the system. The problem is formulated as an optimization problem, suitable for solution by linear programming technique. After establishing the objective function for minimizing the system losses with the help of linearised sensitivity relationships of control variables, i. e., the transformer tap position, generator terminal voltages and switchable reactive power sources. The linear programming technique is used to determine the optimal adjustments to the above variables, simultaneously satisfying the constraints. The proposed algorithm has been tested on a sample system and the result is presented and discussed.

  • PDF

Coordinated Voltage and Reactive Power Control Strategy with Distributed Generator for Improving the Operational Efficiency

  • Jeong, Ki-Seok;Lee, Hyun-Chul;Baek, Young-Sik;Park, Ji-Ho
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.6
    • /
    • pp.1261-1268
    • /
    • 2013
  • This study proposes a voltage and reactive coordinative control strategy with distributed generator (DG) in a distribution power system. The aim is to determine the optimum dispatch schedules for an on-load tap changer (OLTC), distributed generator settings and all shunt capacitor switching on the load and DG generation profile in a day. The proposed method minimizes the real power losses and improves the voltage profile using squared deviations of bus voltages. The results indicate that the proposed method reduces the real losses and voltage fluctuations and improve receiving power factor. This paper proposes coordinated voltage and reactive power control methods that adjust optimal control values of capacitor banks, OLTC, and the AVR of DGs by using a voltage sensitivity factor (VSF) and dynamic programming (DP) with branch-and-bound (B&B) method. To avoid the computational burden, we try to limit the possible states to 24 stages by using a flexible searching space at each stage. Finally, we will show the effectiveness of the proposed method by using operational cost of real power losses and voltage deviation factor as evaluation index for a whole day in a power system with distributed generators.

A Study on Local Coordinative Reactive Power Control between STATCOM and Other Reactive Power Controllers for Voltage Stability Improvement at Substation (변전소 전압안정화를 위한 STATCOM과 기존 조상 설비간의 지역 무효전력 협조제어에 관한 연구)

  • Jeong, Ki-Seok;Chang, Byun-Hoon;Lee, Hyun-Chul;Lee, Geun-Joon;Baek, Young-Sik
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.3
    • /
    • pp.525-530
    • /
    • 2010
  • Installation of FACTS(Flexible AC Transmission System) device can maximize utilization of existing power facilities and reliability of power system. STATCOM has excellent characteristics in operating cost, maintaining facilities, loss and so on. However, STATCOM has a disadvantage of facility cost over capacity. So it is effective to coordinate STATCOM and existing external bank(capacitor and reactor) and OLTC(On Load Tap Changer). This paper mainly proposes coordinative control method between STATCOM installed within substation and other reactive power resources including Shunt Reactors and Shunt Capacitors and OLTC for voltage stability improvement. The proposed coordinative control method is developed for the STATCOM of Mi-gum substation and the simulation results of EMTP/RV model show the effectiveness of the proposed method.

Optimal Voltage and Reactive Power Scheduling for Saving Electric Charges using Dynamic Programming with a Heuristic Search Approach

  • Jeong, Ki-Seok;Chung, Jong-Duk
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.2
    • /
    • pp.329-337
    • /
    • 2016
  • With the increasing deployment of distributed generators in the distribution system, a very large search space is required when dynamic programming (DP) is applied for the optimized dispatch schedules of voltage and reactive power controllers such as on-load tap changers, distributed generators, and shunt capacitors. This study proposes a new optimal voltage and reactive power scheduling method based on dynamic programming with a heuristic searching space reduction approach to reduce the computational burden. This algorithm is designed to determine optimum dispatch schedules based on power system day-ahead scheduling, with new control objectives that consider the reduction of active power losses and maintain the receiving power factor. In this work, to reduce the computational burden, an advanced voltage sensitivity index (AVSI) is adopted to reduce the number of load-flow calculations by estimating bus voltages. Moreover, the accumulated switching operation number up to the current stage is applied prior to the load-flow calculation module. The computational burden can be greatly reduced by using dynamic programming. Case studies were conducted using the IEEE 30-bus test systems and the simulation results indicate that the proposed method is more effective in terms of saving electric charges and improving the voltage profile than loss minimization.

A Study on the Voltage - Reactive Power Control Considering Fuzziness (FUZZY정도를 고려한 전압-무효전력제어에 관한 연구)

  • Song, K.Y.;Cho, J.W.;Lee, H.Y.
    • Proceedings of the KIEE Conference
    • /
    • 1991.11a
    • /
    • pp.31-34
    • /
    • 1991
  • This paper presents a voltage-reactive power control algorithm considering fuzziness. In this paper, a coordination technique based on fuzzy set theory is applied for system loss-voltage compromises. Here, we introduce membership functions to measure the adaptability of real power loss of transmission line and the deviation of load bus voltage from the constraints. Then the optimization of problem is solved by a linear programming technique considering the fuzzy set theory. The objective is a degree of satisfaction about the fuzzy decision-making function. The effectiveness of this algorithm has been verified by testing on sample systems.

  • PDF

Effect of the Reactive Power Compensation System on Performance Enhancement in a 900 MW Combined Cycle Power Plant (무효전력보상장치 설치가 900 MW 복합화력발전소의 성능향상에 미치는 효과)

  • Lee, Young Ok;Yoo, Hoseon
    • Plant Journal
    • /
    • v.17 no.2
    • /
    • pp.48-53
    • /
    • 2021
  • In the case of a 900 MW combined cycle power plant, most of the load on the site is a rotating device and is operated at a low power factor, and the power factor decrease increases the reactive power, which causes the efficiency of the device to be consumed and unnecessary unnecessary power consumption. This study intends to present the results by installing and operating a reactive power compensation device that absorbs and removes reactive power, which is a solution to this problem, on a 6.9 kV on-board bus. As a result of application of this system, first, it was confirmed that the power factor of the rotating machine was improved to 0.22 and the load power in the house was reduced by 1.4%, and the thermal efficiency of the generator was increased by 0.1% and the power generation power by 810 kW. Next, it was confirmed that the cost of construction and operation can be reduced in the future due to economic feasibility, with a decrease of 200 million won/year in electricity loss compared to 1.5 billion won in investment, an increase of 1 billion won/year in sales, and a one-year capital recovery period.