• Title/Summary/Keyword: Reactive oxygen species (ROS)

Search Result 1,873, Processing Time 0.029 seconds

Development and Application of Non-Destructive-Type Device of Ingredients in Mulberry Leaf Tea (뽕잎 차에서의 성분 비파괴형 기기 기술 개발 및 응용)

  • Cheun, Byeung-Soo;Min, Je-Ho
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.8 no.10
    • /
    • pp.1595-1600
    • /
    • 2013
  • In the present study,effect of natural mulbelly leaf tea on DMEM MDCK cell line. Mulbelly leaf teas inhibited the proliferation in primery MDCK cells in a dose dependent manner. These results show that mulbelly teas potent inhibits the reactive oxygen species (ROS) and not destruction a component. Therefore, mulbelly teas might improve overall quality of the color and taste. And might be applied newly to development of componant mulbelly teas quality and biochemical change by ROS in living things.

Anti-Inflammatory Effect of Extracts from Ligustrum obtusifolium S. fruits in RAW 264.7 Macrophages (RAW 264.7 대식세포 내에서 남정목 열매 추출물의 항염증 효과)

  • Moon, Ju-Ho;Go, Heung;Shin, Seon-Mi;Kim, Ki-Tae
    • The Journal of the Society of Korean Medicine Diagnostics
    • /
    • v.17 no.3
    • /
    • pp.263-273
    • /
    • 2013
  • Objectives This study was designed to investigate the anti-inflammatory effect of extracts from Ligustrum obtusifolium S. fruits(LOF) in RAW 264.7 Macrophages stimulated with lipopolysaccharide(LPS). Methods We examined productions of nitric oxide(NO), reactive oxygen species(ROS), inducible isoforms of NO synthase(iNOS), cyclooxygenase-2(COX-2) to investigate the anti-inflammatory effect of LOF extracts. In addition, we measured generation of pro-inflammatory cytokines(TNF-${\alpha}$, IL-6). Results Cell viability showed that LOF extracts had no cytotoxicity in Raw 264.7 cells. The treatment with LOF extracts significantly decreased the generation of NO and pro-inflammatory cytokines(TNF-${\alpha}$, IL-6) in LPS-stimulated macrophage cells. Furthermore LOF extracts inhibited intracellular ROS generation dose dependently and reduced the expression of iNOS, COX-2 proteins. Conclusions These results showed that the LOF extracts had an anti-inflammatory effect on LPS-stimulated Raw 264.7 cells. These findings provide scientific support for the use of this Ligustrum obtusifolium S. for inflammatory-related diseases.

Tea Flavonoids Induced Differentiation of Peripheral Blood-derived Mononuclear Cells into Peripheral Blood-derived Endothelial Progenitor Cells and Suppressed Intracellular Reactive Oxygen Species Level of Peripheral Blood-derived Endothelial Progenitor Cells

  • Widowati, Wahyu;Wijaya, Laura;Laksmitawati, Dian Ratih;Widyanto, Rahma Micho;Erawijantari, Pande Putu;Fauziah, Nurul;Bachtiar, Indra;Sandra, Ferry
    • Natural Product Sciences
    • /
    • v.22 no.2
    • /
    • pp.87-92
    • /
    • 2016
  • Endothelial dysfunction in atherosclerosis is associated with increasing oxidative stress that could be reversed by antioxidant. Therefore epigallocatechin gallate (EGCG), epicatechin gallate (ECG), epigallocatechin (EGC) and catechin (C) of tea flavonoids were investigated for their roles in regenerating endothelial cell. Peripheral blood mononuclear cells (PB-MNCs) were isolated, plated and cultured in medium with/without treatment of EGCG, ECG, EGC and C. Results showed that among all EGCG, ECG, EGC and C concentrations tested, $12.5{\mu}mol/L$ was not cytotoxic for peripheral blood-derived endothelial progenitor cells (PB-EPCs). Treatment of EGCG, ECG, EGC or C increased the percentages of CD34, CD133, VEGFR-2 expressions and suppressed hydrogen peroxide-induced percentages of reactive oxygen species (ROS) level in PB-EPCs. Taken together, our current results showed that EGCG, ECG, EGC or C of tea flavonoids could induce differentiation of PB-MNCs into PB-EPCs as well as protect PB-EPCs from oxidative damage by suppresing the intracellular ROS levels.

Neuroprotective Activity of Phytosterols Isolated from Artemisia apiacea (청호의 Phytosterol 성분 분리 및 뇌세포 보호 활성)

  • Lee, Jiwoo;Weon, Jin Bae;Ma, Choong Je
    • Korean Journal of Pharmacognosy
    • /
    • v.45 no.3
    • /
    • pp.214-219
    • /
    • 2014
  • Artemisia apiacea is a traditional herbal medicine using treatment of eczema and jaundice in Eastern Asia including China, Korea, and Japan. In this study, the three phytosterol constituents were isolated and identified from the hexane fraction of 80% aqueous methanol extract of A. apiacea. Compounds were isolated using open column chromatography (silica gel). Their chemical structures were also established using $^1H$-NMR and $^{13}C$-NMR. Moreover, neuroprotective activity of each compound against glutamate-induced neurotoxicity in hippocampal HT-22 cell line was evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Furthermore, Inhibition of reactive oxygen species (ROS) and calcium ion ($Ca^{2+}$) accumulation were measured for elucidation of neuroprotective mechanism of isolated compounds. They showed that stigmasterol had neuroprotective activity against the glutamate-induced toxicity by inhibition of ROS and $Ca^{2+}$ production. In conclusion, isolated compound of A. apiacea might be useful for therapeutic agent against neurodegenerative diseases.

Antioxidant capacity of silkworm pupa according to extraction condition, variety, pupation time, and sex

  • Lee, Ji Hae;Jo, You-Young;Kim, Seong-Wan;Kweon, HaeYong
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.43 no.2
    • /
    • pp.59-66
    • /
    • 2021
  • Silkworm pupa has been used as an edible insect with the high quality of protein and unsaturated fatty acids. In this study, antioxidant activities of pupa according to variety, pupation day, sex, and extraction solvent were analyzed. The 30% ethanol extract showed highest radical scavenging activity compared with the DW, hexane, and 70-100% ethanol extracts. In the DPPH and ABTS radical scavenging assay according to the type of pupa, the antioxidant effect was increased in female with the early stage of pupation day. In cell-based assay, reactive oxygen species (ROS) level was decreased in pupa groups by -30 to -50% followed by tert-butyl hydroperoxide (t-BHP) treatment. The ROS levels were significantly reduced in 7th day in each variety. In conclusion, the free radical and ROS scavenging effects were increased in female pupa with the early pupation day. The result could be used for development of bioactive materials using silkworm pupa.

Deterioration in the fertilization capability of boar spermatozoa upon exposure to mancozeb

  • Adikari Arachchige Dilki Indrachapa Adikari;Seung-Tae Moon;Young-Joo Yi
    • Korean Journal of Agricultural Science
    • /
    • v.49 no.2
    • /
    • pp.259-267
    • /
    • 2022
  • Although pesticides are recognized as necessary substances to improve agricultural production, exposure to pesticides is known to have a direct or indirect adverse effect on the reproductive function of mammals. The present study examines the effects of mancozeb, a well-known fungicide, on the fertility capacity of spermatozoa. Boar spermatozoa exposed to varying concentrations of mancozeb (0.01 - 0.5 µM) were evaluated for motility, motion kinetic parameters, viability, acrosome integrity and the generation of intracellular reactive oxygen species (ROS) after 30 min or 2 hrs of incubation. A significant reduction in the motility of spermatozoa was observed upon exposure to mancozeb. Similarly, there was a significant reduction of the motion kinematics of sperm treated with mancozeb as compared to untreated controls (p < 0.05). The sperm viability percentage and acrosome integrity also showed dose-dependent decreases upon exposure to mancozeb. High concentrations of mancozeb (0.2 - 0.5 µM) induced higher levels of intracellular ROS production, which resulted in the loss of the sperm membrane and decreased sperm motility due to oxidative stress. Taken together, the results here indicate that direct exposure to mancozeb affects the sperm fertility capacity. Hence, careful research that examines the interaction between reproduction and environmental toxins is crucial to prevent fertility disorders in animals.

Exposure of chlorpyrifos impairs the normal function of boar spermatozoa

  • Adikari Arachchige Dilki Indrachapa Adikari;Young-Joo Yi
    • Korean Journal of Agricultural Science
    • /
    • v.49 no.2
    • /
    • pp.307-316
    • /
    • 2022
  • The misuse of pesticides has resulted in environmental pollution, which directly or indirectly affects all life on earth. Chlorpyrifos is a chlorinated organophosphorus pesticide that is commonly used in agriculture. The aim of this study was to investigate the effects of chlorpyrifos on the fertilization function of boar spermatozoa. Sperm samples from boars were subjected to varying concentrations of chlorpyrifos from 10 to 200 µM for two incubation periods, 30 min or 2 hrs. The boar spermatozoa were then evaluated for motility, motion kinematics, viability, acrosome integrity, chromatin stability, and generation of intracellular reactive oxygen species (ROS). There was a significant percentage reduction in sperm motility and motion kinematic parameters after both incubation periods (p < 0.05). The proportion of viable spermatozoa decreased after incubation for 30 min and 2 hrs in a dose-dependent manner (p < 0.05). A significantly lower percentage of normal acrosomes was observed in spermatozoa exposed to 200 µM chlorpyrifos over both incubation periods, compared to the controls. The damage to sperm DNA was significantly higher when the exposure time to chlorpyrifos was longer. There was a significant increase in the ROS levels in spermatozoa incubated with chlorpyrifos for 2 hrs (p < 0.05). From the results of the present study, it is concluded that direct exposure of boar spermatozoa to chlorpyrifos altered boar sperm characteristics, suggesting potential toxicity that may affect the male reproductive function.

Metformin Induces Lipogenesis and Apoptosis in H4IIE Hepatocellular Carcinoma Cells

  • Deokbae Park;Sookyoung Lee;Hyejin Boo
    • Development and Reproduction
    • /
    • v.27 no.2
    • /
    • pp.77-89
    • /
    • 2023
  • Metformin is the most widely used anti-diabetic drug that helps maintain normal blood glucose levels primarily by suppressing hepatic gluconeogenesis in type II diabetic patients. We previously found that metformin induces apoptotic death in H4IIE rat hepatocellular carcinoma cells. Despite its anti-diabetic roles, the effect of metformin on hepatic de novo lipogenesis (DNL) remains unclear. We investigated the effect of metformin on hepatic DNL and apoptotic cell death in H4IIE cells. Metformin treatment stimulated glucose consumption, lactate production, intracellular fat accumulation, and the expressions of lipogenic proteins. It also stimulated apoptosis but reduced autophagic responses. These metformin-induced changes were clearly reversed by compound C, an inhibitor of AMP-activated protein kinase (AMPK). Interestingly, metformin massively increased the production of reactive oxygen species (ROS), which was completely blocked by compound C. Metformin also stimulated the phosphorylation of p38 mitogen-activated protein kinase (p38MAPK). Finally, inhibition of p38MAPK mimicked the effects of compound C, and suppressed the metformin-induced fat accumulation and apoptosis. Taken together, metformin stimulates dysregulated glucose metabolism, intracellular fat accumulation, and apoptosis. Our findings suggest that metformin induces excessive glucose-induced DNL, oxidative stress by ROS generation, activation of AMPK and p38MAPK, suppression of autophagy, and ultimately apoptosis.

Phospholipase A2, reactive oxygen species, and lipid peroxidation in CNS pathologies

  • Adibhatla, Rao Muralikrishna;Hatcher, J.F.
    • BMB Reports
    • /
    • v.41 no.8
    • /
    • pp.560-567
    • /
    • 2008
  • The importance of lipids in cell signaling and tissue physiology is demonstrated by the many CNS pathologies involving deregulated lipid metabolism. One such critical metabolic event is the activation of phospholipase $A_2$ ($PLA_2$), which results in the hydrolysis of membrane phospholipids and the release of free fatty acids, including arachidonic acid, a precursor for essential cell-signaling eicosanoids. Reactive oxygen species (ROS, a product of arachidonic acid metabolism) react with cellular lipids to generate lipid peroxides, which are degraded to reactive aldehydes (oxidized phospholipid, 4-hydroxynonenal, and acrolein) that bind covalently to proteins, thereby altering their function and inducing cellular damage. Dissecting the contribution of $PLA_2$ to lipid peroxidation in CNS injury and disorders is a challenging proposition due to the multiple forms of $PLA_2$, the diverse sources of ROS, and the lack of specific $PLA_2$ inhibitors. In this review, we summarize the role of $PLA_2$ in CNS pathologies, including stroke, spinal cord injury, Alzheimer's, Parkinson's, Multiple sclerosis-Experimental autoimmune encephalomyelitis and Wallerian degeneration.

Reactive Oxygen Species (ROS) Generation Contributes to the Synergistic Anticancer Effect of Astragalus Membranaceus and Adenophora Triphylla Var. Japonica in H1299 Human Lung Carcinoma Cells (H1299 인체폐암세포주에서 활성산소종 생성에 의한 황기와 사삼의 항암 시너지 작용)

  • Min, Tae Rin;Park, Hyun Ji;Park, Shin Hyung
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.32 no.3
    • /
    • pp.157-164
    • /
    • 2018
  • This study was designed to investigate the mechanism of the synergistic anticancer effect of Astragalus membranaceus (AM) and Adenophora triphylla var. japonica (AT) in H1299 human lung carcinoma cells. A combined treatment of ethanol extract of AM (EAM) and AT (EAT) explosively increased the reactive oxygen species (ROS) generation in H1299 cells compared to the single treatment of each of them. Co-treatment of N-acetyl-L-cysteine (NAC) with EAM and EAT markedly enhanced the cell viability and suppressed apoptosis in H1299 cells, suggesting that ROS generation contributed to the anticancer effect of EAM and EAT. Interestingly, the combined treatment of EAM and EAT down-regulated p-AKT in H1299 cells, which was abrogated by NAC treatment. These results clearly indicated that ROS generation mediated the inactivation of AKT. Co-treatment of LY294002 with EAM and EAT significantly reduced the cell viability at a concentration which EAM and EAT didn't show any cytotoxicity. In addition, the recovery of cell viability by co-treatment of NAC with EAM and EAT was quite reversed by LY294002 treatment, which confirmed that the inactivation of AKT played a pivotal role in ROS-mediated apoptosis. Taken together, our results demonstrated that the synergistic anticancer effect of EAM and EAT was mediated by ROS generation and inactivation of AKT. We provide a valuable preclinical data for the development of more effective combination of AM and AT to treat lung cancer.