• 제목/요약/키워드: Reactive oxygen species

검색결과 2,745건 처리시간 0.041초

Role of oxygen in plasma induced chemical reactions in solution

  • Ki, Se Hoon;Uhm, Han Sup;Kim, Minsu;Baik, Ku Youn;Choi, Eun Ha
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.208.2-208.2
    • /
    • 2016
  • Many researchers have paid attention to the studies on the interaction between non-thermal plasma and aqueous solutions for biomedical applications. The gas composition in the plasma is very important. Oxygen and nitrogen are the main gases of interest in biological applications. Especially, we focus on the oxygen concentration. In this experiment, we studied the role of oxygen concentration in plasma induced chemical reactions in solution. At first, the amount of ions are measured according to changing the oxygen concentration. And we checked the relationship between these ions and pH value. Secondly, when the oxygen concentration is changed, it identified the type and amount of radical generated by the plasma. In order to confirm the effect of these chemical property change to biological material, hemoglobin and RBCs are chosen. RBCs are one of the common basic biological cells. Thirdly, when plasma treated according to oxygen concentration in nitrogen feeding gas, oxidation of hemoglobin and RBC is checked. Finally, membrane oxidation of RBC is measured to examine the relation between hemoglobin oxidation and membrane damage through relative hemolysis and Young's modulus. Our results suggest that reactive species generated by the plasma differsdepending on the oxygen concentration changes. The pH values are decreased when oxygen concentration increased. OH decrease and NO increase are also observed. These reactive species makes change of chemical properties of solution. We also able to confirm that the difference in these reactive species to affect the oxidation of the Hb and RBCs. The Hb and RBCs are more oxidized with the high oxygen concentration conditions. But membrane is damaged more by plasma treatment with only nitrogen gas. It is shown that red blood cells membrane damage and oxidation of hemoglobin are not directly related.

  • PDF

Nitroprusside가 인간정자의 생존력, 운동성, Reactive Oxygen Species 발생에 미치는 영향 (The Effect of Nitroprusside on the Sperm Motility, Viability, and Reactive Oxygen Species Generation)

  • 민부기;이희민;김기석;이희섭;김흥곤;홍기연;이봉주
    • Clinical and Experimental Reproductive Medicine
    • /
    • 제23권3호
    • /
    • pp.351-355
    • /
    • 1996
  • Objective: To analyze the direct effect of nitre oxide, generated from sodium nitroprusside, on sperm motility and reactive oxygen species. Design: Human sperm samples were treated to allow swim-up and washing. And the samples were devided into four aliquots. Each aliquot was incubated with either concentration at 0, 100nM, $10{\mu}M$, 1mM of nitroprusside. Intervention: Samples were measured chemiluminosence for reactive oxygen species of each aliquot with concentrations at 0, 100nM, $10{\mu}M$, 1mM of nitroprusside at allowing swim-up and washing of sperm. Main Outcome Measures: Percent motion parameters and viability were asse-ssed at 0, 3, 6, 12, 24 hours incubation. Results: The percent viablity was lower slightly in control group (50.2%) than that in sperm treated with 100nM of nitroprusside(57.5%) at 24 hours after incubation, while was reduced significantly in sperm with concentra-tion of $10{\mu}M(42.1%)$ and 1mM(21.3%)of nitroprusside at 6 hours after incubation. And the sperm treated with 1mM of nitroprusside was immotile totally at 6 hours after incubation. The straight line$(35.3{\pm}5.6%)$, the rapid forward$(37.2{\pm}6.4%)$ and the weak curvilinear velocity$(9.6{\pm}2.4%)$were more favorable comparing with those ($32.4{\pm}4.2%$, $30.0{\pm}7.8%$ and $18.0{\pm}4.6%$ respectively) in control group at 3 hours after incubation, but reduced significantly in sperm treated with $10{\mu}M$ and 1mM of nitroprusside. The levels of reactive oxygen species in control(700 c.p.m.) is lower significantly than that in each experimental groups of sperm treated with nitroprusside. And the levels of reactive oxygen species were 2200 c.p.m. in 100nM, 6200c.p.m. in $1{\mu}M$ and 12800c.p.m. in 1mM respectively. Conclusion: These results suggested that the concentration of 100nM of nitroprusside on sperm is beneficial to the maintanance of viablity and motile velocity, but detriment in high concentration of $10{\mu}M$ or 1mM of nitroprusside.

  • PDF

Storage of Bull and Boar Semen: Novel Concepts Derived Using Magnetized Water and Antioxidants

  • Lee, Sang-Hee;Cheong, Hee-Tae;Yang, Boo-Keun;Park, Choon-Keun
    • Reproductive and Developmental Biology
    • /
    • 제38권1호
    • /
    • pp.1-8
    • /
    • 2014
  • Artificial insemination technique has been contributed immensely for production of livestock worldwide as a critical assisted reproductive technique to preserve and propagate excellent genes in domestic animal industry. In the past decade, methods for semen preservation have been improved mostly in liquid preservation method for boar semen and freezing method for bull semen. Among many factors affecting semen quality during preservation, reactive oxygen species, produced by aerobic respiration in sperm for survival and motility, are unfavorable to sperm physiology. In mammalian cell as well as in the sperm, antioxidant system plays a role in degradation of reactive oxygen species. Magnetized water forms smaller stabilizing water clusters, resulting in high absorption and permeability of the cell for water, implicating its application for semen preservation. Therefore, this review focuses on preservation methods of boar and bull semen with respect to improvement of extender and reduction of reactive oxygen species by using magnetized water and supplementation of antioxidants.

Molecular Links between Alcohol and Tobacco Induced DNA Damage, Gene Polymorphisms and Patho-physiological Consequences: A Systematic Review of Hepatic Carcinogenesis

  • Mansoori, Abdul Anvesh;Jain, Subodh Kumar
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권12호
    • /
    • pp.4803-4812
    • /
    • 2015
  • Chronic alcohol and tobacco abuse plays a crucial role in the development of different liver associated disorders. Intake promotes the generation of reactive oxygen species within hepatic cells exposing their DNA to continuous oxidative stress which finally leads to DNA damage. However in response to such damage an entangled protective repair machinery comprising different repair proteins like ATM, ATR, H2AX, MRN complex becomes activated. Under abnormal conditions the excessive reactive oxygen species generation results in genetic predisposition of various genes (as ADH, ALDH, CYP2E1, GSTT1, GSTP1 and GSTM1) involved in xenobiotic metabolic pathways, associated with susceptibility to different liver related diseases such as fibrosis, cirrhosis and hepatocellular carcinoma. There is increasing evidence that the inflammatory process is inherently associated with many different cancer types, including hepatocellular carcinomas. The generated reactive oxygen species can also activate or repress epigenetic elements such as chromatin remodeling, non-coding RNAs (micro-RNAs), DNA (de) methylation and histone modification that affect gene expression, hence leading to various disorders. The present review provides comprehensive knowledge of different molecular mechanisms involved in gene polymorphism and their possible association with alcohol and tobacco consumption. The article also showcases the necessity of identifying novel diagnostic biomarkers for early cancer risk assessment among alcohol and tobacco users.

Protective Effect of Fisetin (3,7,3',4'-Tetrahydroxyflavone) against γ-Irradiation-Induced Oxidative Stress and Cell Damage

  • Piao, Mei Jing;Kim, Ki Cheon;Chae, Sungwook;Keum, Young Sam;Kim, Hye Sun;Hyun, Jin Won
    • Biomolecules & Therapeutics
    • /
    • 제21권3호
    • /
    • pp.210-215
    • /
    • 2013
  • Ionizing radiation can induce cellular oxidative stress through the generation of reactive oxygen species, resulting in cell damage and cell death. The aim of this study was to determine whether the antioxidant effects of the flavonoid fisetin (3,7,3',4'-tetrahydroxyflavone) included the radioprotection of cells exposed to ${\gamma}$-irradiation. Fisetin reduced the levels of intracellular reactive oxygen species generated by ${\gamma}$-irradiation and thereby protected cells against ${\gamma}$-irradiation-induced membrane lipid peroxidation, DNA damage, and protein carbonylation. In addition, fisetin maintained the viability of irradiated cells by partially inhibiting ${\gamma}$-irradiation-induced apoptosis and restoring mitochondrial membrane potential. These effects suggest that the cellular protective effects of fisetin against ${\gamma}$-irradiation are mainly due to its inhibition of reactive oxygen species generation.

Lactobacill spp. 의 황산화 효과 및 활성산소에 대한 내성 (Antioxidant Activity and Tolerance to Reactive Oxygen Species of Lactobacillus spp.)

  • 김현수;정석근;채현석;함준상;안종남;이종문
    • Journal of Animal Science and Technology
    • /
    • 제46권6호
    • /
    • pp.1007-1012
    • /
    • 2004
  • 본 연구에서는 4종류의 Lactobacillus spp.의 항산화 효과와 활성산소에 대한 내성을 측정하였다. 그 결과 L. casei KCTC 3260의 항산화 효과가 intact cell에 서 36.9%, cell lysate에 서 79.8%로서 높은 항산화 효과를 나타내었다. 또 한 lmM 농도의 hydrogen peroxide에 서 생존성에 직접적으로 영향을 받지 않는 등 활성산소에 대해서 높은 내성을 나타내었다. 또한 높은 GPX 활성이 활성산소 하에서 L. casei KCTC 3260의 생존성에 중요한 역할을 하는 것으로 생각된다.

Cytosolic phospholipase A2, lipoxygenase metabolites, and reactive oxygen species

  • Kim, Cheol-Min;Kim, Joo-Young;Kim, Jae-Hong
    • BMB Reports
    • /
    • 제41권8호
    • /
    • pp.555-559
    • /
    • 2008
  • Reactive oxygen species (ROS) are generated in mammalian cells via both enzymatic and non-enzymatic mechanisms. Although certain ROS production pathways are required for the performance of specific physiological functions, excessive ROS generation is harmful, and has been implicated in the pathogenesis of a number of diseases. Among the ROS-producing enzymes, NADPH oxidase is widely distributed among mammalian cells, and is a crucial source of ROS for physiological and pathological processes. Reactive oxygen species are also generated by arachidonic acid (AA) metabolites, which are released from membrane phospholipids via the activity of cytosolic phospholipase $A_2$ ($cPLA_2$). In this study, we describe recent studies concerning the generation of ROS by AA metabolites. In particular, we have focused on the manner in which AA metabolism via lipoxygenase (LOX) and LOX metabolites contributes to ROS generation. By elucidating the signaling mechanisms that link LOX and LOX metabolites to ROS, we hope to shed light on the variety of physiological and pathological mechanisms associated with LOX metabolism.

Hydroxyl Radical Species Generated by Non-thermal Direct Plasma Jet and Their Qualitative Evaluation

  • Ghimire, B.;Hong, S.I.;Hong, Y.J.;Choi, E.H.
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.198.2-198.2
    • /
    • 2016
  • Reactive oxygen and nitrogen species (RONS) can be generated by using non-thermal atmospheric pressure plasma jet which have profound biomedical applications [1, 2]. In this work, reactive oxygen species like hydroxyl radical (OH) are generated by using non-thermal direct plasma jet above water surface using Ar gas and their properties have been studied using ultraviolet absorption spectroscopy. OH radicals are found to be generated simultaneously with the discharge current with concentration of $2.7{\times}1015/cm3$ at 7mm above water surface while their persistence time have been measured to be $2.8{\mu}S$. In addition, it has been shown that plasma initiated ultraviolets play a major role to generate RONS inside water. Further works are going on to measure the temporal behavior of OH and $O2^*-$.

  • PDF

Modulation of Presynaptic GABA Release by Oxidative Stress in Mechanically-isolated Rat Cerebral Cortical Neurons

  • Hahm, Eu-Teum;Seo, Jung-Woo;Hur, Jin-Young;Cho, Young-Wuk
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제14권3호
    • /
    • pp.127-132
    • /
    • 2010
  • Reactive oxygen species (ROS), which include hydrogen peroxide ($H_2O_2$), the superoxide anion (${O_2}^-{\cdot}$), and the hydroxyl radical ($OH{\cdot}$), are generated as by-products of oxidative metabolism in cells. The cerebral cortex has been found to be particularly vulnerable to production of ROS associated with conditions such as ischemia-reperfusion, Parkinson's disease, and aging. To investigate the effect of ROS on inhibitory GABAergic synaptic transmission, we examined the electrophysiological mechanisms of the modulatory effect of $H_2O_2$ on GABAergic miniature inhibitory postsynaptic current (mIPSCs) in mechanically isolated rat cerebral cortical neurons retaining intact synaptic boutons. The membrane potential was voltage-clamped at -60 mV and mIPSCs were recorded and analyzed. Superfusion of 1-mM $H_2O_2$ gradually potentiated mIPSCs. This potentiating effect of $H_2O_2$ was blocked by the pretreatment with either 10,000-unit/mL catalase or $300-{\mu}M$ N-acetyl-cysteine. The potentiating effect of $H_2O_2$ was occluded by an adenylate cyclase activator, forskolin, and was blocked by a protein kinase A inhibitor, N -(2-[p-bromocinnamylamino] ethyl)-5-isoquinolinesulfonamide hydrochloride. This study indicates that oxidative stress may potentiate presynaptic GABA release through the mechanism of cAMP-dependent protein kinase A (PKA)-dependent pathways, which may result in the inhibition of the cerebral cortex neuronal activity.

Upregulation of Heme Oxygenase-1 as an Adaptive Mechanism against Acrolein in RAW 264.7 Macrophages

  • Lee, Nam-Ju;Lee, Seung-Eun;Park, Cheung-Seog;Ahn, Hyun-Jong;Ahn, Kyu-Jeung;Park, Yong-Seek
    • Molecular & Cellular Toxicology
    • /
    • 제5권3호
    • /
    • pp.230-236
    • /
    • 2009
  • Acrolein, a known toxin in cigarette smoke, is the most abundant electrophilic $\alpha$, $\beta$-unsaturated aldehyde to which humans are exposed in a variety of environmental pollutants, and is also product of lipid peroxidation. Increased unsaturated aldehyde levels and reduced antioxidant status plays a major role in the pathogenesis of various diseases such as diabetes, Alzheimer's and atherosclerosis. The findings reported here show that low concentrations of acrolein induce heme oxygenase-1 (HO-1) expression in RAW 264.7 macrophages. HO-1 induction by acrolein and signal pathways was measured using reverse transcription-polymerase chain reaction, Western blot and immunofluorescence staining analyses. Inhibition of extracellular signal-regulated kinase activity significantly attenuated the induction of HO-1 protein by acrolein, while suppression of Jun N-terminal kinase and p38 activity did not affect induction of HO-1 expression. Moreover, rottlerin, an inhibitor of protein kinase $\delta$, suppressed the upregulation of HO-1 protein production, possibly involving the interaction of NF-E2-related factor 2 (Nrf2), which has a key role as a HO-1 transcription factor. Acrolein elevated the nuclear translocation of Nrf2 in nuclear extraction. The results suggest that RAW 264.7 may protect against acrolein-mediated cellular damage via the upregulation of HO-1, which is an adaptive response to oxidative stress.