• Title/Summary/Keyword: Reactive nitrogen

검색결과 453건 처리시간 0.027초

Effects of Reactive Oxygen Species and Nitrogen Species on the Excitability of Spinal Substantia Gelatinosa Neurons

  • Park, Joo Young;Park, Areum;Chun, Sang Woo
    • International Journal of Oral Biology
    • /
    • 제41권3호
    • /
    • pp.141-147
    • /
    • 2016
  • Reactive oxygen species (ROS) and nitrogen species (RNS) are both important signaling molecules involved in pain transmission in the dorsal horn of the spinal cord. Xanthine oxidase (XO) is a well-known enzyme for the generation of superoxide anions ($O_2^{\bullet-}$), while S-nitroso-N-acetyl-DL-penicillamine (SNAP) is a representative nitric oxide (NO) donor. In this study, we used patch clamp recording in spinal slices of rats to investigate the effects of $O_2^{\bullet-}$ and NO on the excitability of substantia gelatinosa (SG) neurons. We also used confocal scanning laser microscopy to measure XO- and SNAP-induced ROS and RNS production in live slices. We observed that the ROS level increased during the perfusion of xanthine and xanthine oxidase (X/XO) compound and SNAP after the loading of 2',7'-dichlorofluorescin diacetate ($H_2DCF-DA$), which is an indicator of intracellular ROS and RNS. Application of ROS donors such as X/XO, ${\beta}-nicotinamide$ adenine dinucleotide phosphate (NADPH), and 3-morpholinosydnomimine (SIN-1) induced a membrane depolarization and inward currents. SNAP, an RNS donor, also induced membrane depolarization and inward currents. X/XO-induced inward currents were significantly decreased by pretreatment with phenyl N-tert-butylnitrone (PBN; nonspecific ROS and RNS scavenger) and manganese(III) tetrakis(4-benzoic acid) porphyrin (MnTBAP; superoxide dismutase mimetics). Nitro-L-arginine methyl ester (NAME; NO scavenger) also slightly decreased X/XO-induced inward currents, suggesting that X/XO-induced responses can be involved in the generation of peroxynitrite ($ONOO^-$). Our data suggest that elevated ROS, especially $O_2^{\bullet-}$, NO and $ONOO^-$, in the spinal cord can increase the excitability of the SG neurons related to pain transmission.

Protective effect of ginsenosides Rk3 and Rh4 on cisplatin-induced acute kidney injury in vitro and in vivo

  • Baek, Seung-Hoon;Shin, Byong-kyu;Kim, Nam Jae;Chang, Sun-Young;Park, Jeong Hill
    • Journal of Ginseng Research
    • /
    • 제41권3호
    • /
    • pp.233-239
    • /
    • 2017
  • Background: Nephrotoxicity is the major side effect in cisplatin chemotherapy. Previously, we reported that the ginsenosides Rk3 and Rh4 reduced cisplatin toxicity on porcine renal proximal epithelial tubular cells (LLC-PK1). Here, we aimed to evaluate the protective effect of ginsenosides Rk3 and Rh4 on kidney function and elucidate their antioxidant effect using in vitro and in vivo models of cisplatin-induced acute renal failure. Methods: An enriched mixture of ginsenosides Rk3 and Rh4 (KG-KH; 49.3% and 43.1%, respectively) was purified from sun ginseng (heat processed Panax ginseng). Cytotoxicity was induced by treatment of $20{\mu}M$ cisplatin to LLC-PK1 cells and rat model of acute renal failure was generated by single intraperitoneal injection of 5 mg/kg cisplatin. Protective effects were assessed by determining cell viability, reactive oxygen species generation, blood urea nitrogen, serum creatinine, antioxidant enzyme activity, and histopathological examination. Results: The in vitro assay demonstrated that KG-KH ($50{\mu}g/mL$) significantly increased cell viability (4.6-fold), superoxide dismutase activity (2.8-fold), and glutathione reductase activity (1.5-fold), but reduced reactive oxygen species generation (56%) compared to cisplatin control cells. KG-KH (6 mg/kg, per os) also significantly inhibited renal edema (87% kidney index) and dysfunction (71.4% blood urea nitrogen, 67.4% creatinine) compared to cisplatin control rats. Of note, KG-KH significantly recovered the kidney levels of catalase (1.2-fold) and superoxide dismutase (1.5-fold). Conclusion: Considering the oxidative injury as an early trigger of cisplatin nephrotoxicity, our findings suggest that ginsenosides Rk3 and Rh4 protect the kidney from cisplatin-induced oxidative injury and help to recover renal function by restoring intrinsic antioxidant defenses.

Pre- and Postsynaptic Actions of Reactive Oxygen Species and Nitrogen Species in Spinal Substantia Gelatinosa Neurons

  • Park, Areum;Chun, Sang Woo
    • International Journal of Oral Biology
    • /
    • 제43권4호
    • /
    • pp.209-216
    • /
    • 2018
  • Reactive oxygen species (ROS) and nitrogen species (RNS) are involved in cellular signaling processes as a cause of oxidative stress. According to recent studies, ROS and RNS are important signaling molecules involved in pain transmission through spinal mechanisms. In this study, a patch clamp recording was used in spinal slices of rats to investigate the action mechanisms of $O_2{^{{\bullet}_-}}$ and NO on the excitability of substantia gelatinosa (SG) neuron. The application of xanthine and xanthine oxidase (X/XO) compound, a ROS donor, induced inward currents and increased the frequency of spontaneous excitatory postsynaptic currents (sEPSC) in slice preparation. The application of S-nitroso-N-acetyl-DL-penicillamine (SNAP), a RNS donor, also induced inward currents and increased the frequency of sEPSC. In a single cell preparation, X/XO and SNAP had no effect on the inward currents, revealing the involvement of presynaptic action. X/XO and SNAP induced a membrane depolarization in current clamp conditions which was significantly decreased by the addition of thapsigargin to an external calcium free solution for blocking synaptic transmission. Furthermore, X/XO and SNAP increased the frequency of action potentials evoked by depolarizing current pulses, suggesting the involvement of postsynaptic action. According to these results, it was estblished that elevated ROS and RNS in the spinal cord can sensitize the dorsal horn neurons via pre- and postsynaptic mechanisms. Therefore, ROS and RNS play similar roles in the regulation of the membrane excitability of SG neurons.

질소이온 빔 보조 마그네트론 스퍼터로 증착 된 AlN 박막의 물성연구 (A Study on the Properties of AlN Films Deposited with Nitrogen Ion Beam Assisted RF Magnetron Sputtering)

  • 허성보;이학민;정철우;최대한;이병훈;김민규;유용주;김대일
    • 열처리공학회지
    • /
    • 제24권2호
    • /
    • pp.77-81
    • /
    • 2011
  • Aluminum nitride (AlN) thin films were prepared by using nitrogen ion beam assisted reactive radio frequency (RF) magnetron sputtering on the glass substrates without intentional substrate heating. After deposition, the effect of nitrogen ion beam energy on the structural and optical properties of AlN films were investigated by x-ray diffraction (XRD), atomic force microscope (AFM) and UV-Vis. spectrophotometer, respectively. AlN films deposited with $N^+$ ion irradiation at 100 eV show the higher (002) peak intensity in XRD pattern than other films. It means that $N^+$ ion energy of 100 eV is the favorable condition for low temperature crystallization. AFM images also show that surface average roughness is increased from 1.5 to 9.6 nm with $N^+$ ion energy in this study. In an optical observation, AlN films which deposited by $N^+$ ion beam energy of 100 eV show the higher transmittance than that of the films prepared with the other $N^+$ ion beam conditions.

메조기공 실리카에 부착된 영가철을 이용한 질산성 질소의 환원 (Reduction of Nitrate-nigrogen by Zero-valent Iron Adhered in Mesoporous Silicas)

  • 연경호;이승학;이관용;박용민;강상윤;이재원;최용수;이상협
    • 상하수도학회지
    • /
    • 제21권1호
    • /
    • pp.139-147
    • /
    • 2007
  • For environmental remediation of a contaminated groundwater plume, the use of zero-valent metal represents one of the latest innovative technologies. In this study, the effects of denitrification by zero-valent iron adsorbed in mesoporous silicas have been studied for groundwater contaminant degradation. The mesoporous silica was functionalized with 3-mercaptopropyltrimethoxysilane (MPTS) ligands and the zero-valent iron precipitated in the mesopore of granular silica was made by $FeCl_2$ and $NaBH_4$. Hydrogen was exchanged with $Fe^{2+}$ ions in the granular silicas. And then the ions were reduced by sodium borohydride in the mesoporous silicas. The surface area of the silica determined via the BET method ranged from 858 to $1275m^2/g$. The reductive reaction of nitrate-nitrogen indicated that the degradation of nitrate-nitrogen appeared to be pseudo first-order with the observed reaction rate constant kobs ($0.1619h^{-1}$) and to be directly proportional to the specific surface area. Therefore, the mesoporous silica with nano zero-valent iron proposed as a novel treatment strategy for contaminated groundwater was successfully implemented herein for the removal of nitrate-nitrogen.

Nitrofurantion이 폐장 미크로솜 지질과산화와 반응성 산소 라디칼 생성에 미치는 영향 (Effects of Nitrofurantoin on Lipid Peroxidation and Reactive Oxygen Radical Generation in Porcine Lung Microsome)

  • 백재승;김시황;김혜원;정명희;김명석
    • 대한약리학회지
    • /
    • 제21권1호
    • /
    • pp.34-48
    • /
    • 1985
  • 항균제 nitrofurantion에 의한 폐독작용의 생화학적 기전을 규명하기 위한 연구 일환으로 in vitro에서 폐장 microsome 지질의 과산화 및 반응성 산소 radical $(O^{-}_{2}{\cdot},\;H_2O_2,\;OH{\cdot},\;^1O_2)$의 생성에 대한 nitrofurantion의 영향과 양자 간의 상호 관련성을 검토하였다. Nitrofurantion은 호기성 반응 조건에서 돼지 폐장 microsome의 NADPH 의존성 지질 과산화를 용량 의존적으로 증가시킬 뿐 아니라 $O^{-}_{2}{\cdot},\;H_2O_2$ 및 두 radical의 상호 작용으로 2차적으로 형성되는 $OH{\cdot}$의 생성 또한 촉진하였으며 $^1O_2$생성은 관찰되지 않았다. 이와 같은 폐장 microsome지질 과산화 증가는 SOD 및 catalase에 의하여 억제될 뿐만 아니라 $OH{\cdot}$ 제거 물질인 mannitol, thiourea에 의하여도 현저히 억제되었으며, $^1O_2$ 제거 물질에 의하여는 영향을 받지 않았던 한편 염기성 반응 조건에서는 nitrofurantoin에 의한 지질 과산화가 관찰되지 않았다. 이상의 결과로 미루어 보아 nitrofurantoin은 폐장 microsome의 NADPH 의존적이 반응성산소 radical $(O^{-}_{2}{\cdot},\;H_2O_2$$OH{\cdot})$의 생성을 증가시키며 이들 중 특히 $OH{\cdot}$ 에 의한 microsome막 지질 과산화를 촉진하는 것으로 결론지었고, 이와 같은 in vivo 현상은 nitrofurantion의 in vitro 폐독작용의 기전을 설명하는 일부가 될 것으로 사료하였다.

  • PDF

대기압 플라즈마에 의한 히드라 재생 연구

  • 이종명;손종혁;주권영;박지훈;남철주;최은하
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.206-206
    • /
    • 2016
  • 플라즈마(plasma)란 전자와 이온이 분리된 제 4의 물질 상태이다. 이 연구의 핵심인 플라즈마 제트(plasma jet)로 재생과 출아를 하는 히드라(Hydra)를 처리하여 플라즈마가 히드라의 출아 정도에 어떠한 영향을 미치는지에 대해 연구를 진행하였다. 히드라는 자포동물문 히드로충강 히드로충목 히드라과 히드라속에 속하며 무척추동물이다. 몸의 길이는 약 5-15mm정도이며 촉수가 6-8개가 있다. 먹이 섭취는 촉수로 먹이를 마비시켜 입을 통해 먹는다. 히드라는 못이나 늪 등의 풀잎이나 물속에 떨어진 낙엽과 썩은 나뭇가지에 붙어 산다. 특히 히드라는 영양 상태의 좋고 나쁨에 따라 무성생식을 하거나 유성생식을 한다. 또한 약 1/200의 아주 작은 단위에서도 재생을 하는 특성을 가지고 있다. 이러한 히드라에 플라즈마 처리를 함으로써 플라즈마가 히드라의 출아 특성에 어떠한 영향을 미치는지에 대해 연구를 수행하였다. 실험에서 사용한 플라즈마 소스는 대기압 플라즈마 제트(Atmospheric pressure plasma jet)이며 Ar(아르곤) 가스를 이용하여 플라즈마를 발생시켰다. 플라즈마가 발생되면 생체용액과 반응을 하면서 ROS(reactive oxygen species)와 RNS(reactive nitrogen species)가 생성되는데 이 활성 종들이 플라즈마의 주요한 특성이라고 할 수 있다. ROS와 RNS에 의해서 세포가 사멸을 하거나 활성화되기도 한다. 또한, ROS와 RNS가 생체 시스템에 영향을 주는 것은 매우 잘 알려져 있다. 이 점을 이용하여 히드라를 1분, 5분, 10분 동안 플라즈마 처리하여 히드라의 출아 특성을 관찰하였다. 관찰한 결과 1분 처리한 히드라 Group과 5분 처리한 히드라 Group이 가장 개체 수 변화가 뛰어났고 10분 처리한 히드라Group은 오히려 개체 수가 감소하였다.

  • PDF

Color Removal from Dyeing Effluent using Activated Carbons Produced from Various Indigenous Biomass

  • Islam, Md. Shahidul;Das, Ajoy Kumar;Kim, In-Kyo;Yeum, Jeong-Hyun
    • 한국염색가공학회지
    • /
    • 제22권2호
    • /
    • pp.94-100
    • /
    • 2010
  • Colored compounds adsorption from the textile dyeing effluents on activated carbons produced from various indigenous vegetable sources by zinc chloride activation is studied. The most important parameters in chemical activation were found to be the chemical ratio of $ZnCl_2$ to feed (3:1), carbonization temperature (460-470 $^{\circ}C$) and time of activation (75 min). The absorbance at 511 nm (red effluent) and 615 nm (blue effluent) are used for estimation of color. It is established that at optimum temperature ($50^{\circ}C$), time of contact (30-40 min) and adsorbent loading (2 g/L), activated carbons developed from rain tree (Samanea saman) saw dust and blackberry (Randia formosa) tree saw dust showed great capability to remove color materials from the effluents. It is observed that adsorption of reactive dyes by all types of activated carbons is more than that of disperse dyes. It is explained that because of its acidic nature the activated carbon can adsorb better reactive dye particles containing large number of nitrogen sites and $-SO_3Na$ group in their structure. The use of activated carbons from the indigenous biomass would be economical, because saw dusts are readily available waste worldwide.

교감단(交感丹)의 투여가 STRESS에 의한 면역반응의 억제에 미치는 영향 (Effect of Gyogamdan Administration on the Stress-Induced Immunosuppression in the Mouse)

  • 황현순;류영수
    • 동의신경정신과학회지
    • /
    • 제8권2호
    • /
    • pp.13-24
    • /
    • 1997
  • This study was done to know the effects of the water extracts of Gyogamdan(GGD) on the function of macrophages, the most important cells of the innate immune system, and the rosette forming ability of splenocytes in the mouse under stress. The effects of GGD on the immunosuppression induced by noise stress are as follows. 1. Administration of GGD water extracts normalized the bo요 weight which might be decreased by noise stress. 2. Administration of GGD water extracts increased the production of the such reactive oxygen intermediates as superoxide and hydrogen peroxide from macrophsges in vivo & in vitro which were decreased by noise stress. 3. Administration of GGS water extracts did not affect the production of reactive nitrogen intermediates. 4. Administration of GGD water extracts increased the rosette forming ability of splenocytes which was decreased by noise stress. The above effects of GGD might be useful for the treatment of stress-induced infections diseases which could be caused by the suppression of immune responeses which are initiated by the functions of macrophages of the innate immune system.

  • PDF

Simplified Slow Freezing Program Established for Effective Banking of Embryonic Stem Cells

  • Kim, Gil Ah;Lee, Seung Tae;Lee, Eun Ju;Choi, Jung Kyu;Lim, Jeong Mook
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제22권3호
    • /
    • pp.343-349
    • /
    • 2009
  • This study was designed to simplify a cryopreservation program for embryonic stem cells (ESCs) by selection of cooling method and cryoprotectant. Commercially available mouse E14 embryonic stem cells (ESCs) were cryopreserved with various protocols, and morphology and viability of the frozen-thawed ESCs and their reactive oxygen species (ROS) production were subsequently monitored. Post-thaw colony-formation of ESCs was detected only after a slow freezing using dimethyl sulfoxide (DMSO) by stepwise placement of a freezing container into a $-80^{\circ}C$ deep freezer and subsequently into -$196^{\circ}C$ liquid nitrogen, while no proliferation was detected after vitrification. When the simplified protocol was employed, the replacement of DMSO with a mixture of DMSO and ethylene glycol (EG) further improved the post-thaw survival. ROS generation in ESCs frozen-thawed with the optimized protocol was not increased compared with non-frozen ESCs. The use of fresh mouse embryonic fibroblasts as feeder cells for post-thaw subculture did not further increase post-thaw cell viability. In conclusion, a simplified slow-freezing program without employing programmable freezer but using DMSO and EG was developed which maintains cell viability and colony-forming activity of ESCs during post-thaw subculture.