• Title/Summary/Keyword: Reactive blue 4

Search Result 77, Processing Time 0.036 seconds

Isolation of Novel White-rot Fungus and Effect for Decolorization of Dye Wastewater (새로운 염색폐수(染色廢水) 색도(色度) 제거(除去) 백색부후균(白色腐朽菌)의 분리(分離) 및 색도(色度) 제거(除去) 효과(效果))

  • Nam, Youn-Ku;Kwon, Hyuk-Ku;Lee, Bong-Joon;Lee, Jang-Hoon
    • Journal of Environmental Health Sciences
    • /
    • v.32 no.4 s.91
    • /
    • pp.381-385
    • /
    • 2006
  • For decolorization of synthetic dyes, One fungus(HUE05-1) which was isolated from textile wastewater collected from industrial complex in Korea showed excellent ability of removing synthetic dyes. This fungus was identified as Basidiomycetes species by Internal Transcribed Spacers (ITS) sequence. Isolated fungi. HUE05-1 completely decolorized all dyes in both solid and liquid condition. The decolorization results were Reactive Orange-16, 97.12%; Reactive Blue-19, 92.09%; Reactive Blue-49, 97.04%; Reactive Yellow-145, 95.53%; Acid Orange-10, 99.18%; Acid Violet-43, 98.73%; Acid Blue-350, 94.71% and Disperse Blue-106, 90.07%.

Continuous Biodegradation of Reactive Dyes by Aspergillus sojae B-10 (Aspergillus sojae B-10에 의한 반응성 염료의 탈색조건)

  • 류병호;김동석;안성만;원용돈;정종순
    • Journal of Environmental Health Sciences
    • /
    • v.21 no.4
    • /
    • pp.10-16
    • /
    • 1995
  • Dyes are released into the environment from industrial wasterwater. They are considered to be a pollution problem because of the wide spread into environment with a variety of colors. In order to biological treatment of industrial dyes waste water, biodegradation of reactive dyes such as Rifacion Red H-3EB, Rifazol Blue BT, Rifacion Yellow P-4G and Rifacion Brown RT were carried out decolorized by Aspergillus sojae B-10. Aspergillus sojae B-10 showed the almost completely biodegradation ability when it was cultivated in a 2.0% glucose, 0.06% sodium nitrite, 0.1% $KH_2PO_4$, 0.5% $MgSO_4\cdot 7H_2O$ containing each reactive dyes (500 ppm) under the optimal conditions of 32$\circ$C and pH 5. The mycelium of Aspergillus sojae B-10 was produced extracellular enzyme which has concerned responsible for dyes biodegradation. Under optimal conditions, reactive dyes started being decolorized within 24 hr and its was almost decolorized c ompletely after 5 days incubation. Rifazol blue RT was not completely decolorized until 5 days of cultivation. Rafacion Red BT, Rifasol blue BT and Rifacion yellow P-4G were completely decolorized after 5 days cultivation.

  • PDF

Utilization of Corynebacterium glutamicum Biomass as a Regenerable Biosorbent for Removal of Reactive Dyes from Aqueous Solution (반응성 염료 제거를 위한 재생 가능한 흡착제로서 Corynebacterium glutamicum 바이오매스의 이용)

  • Won, Sung -Wook;Choi, Sun Beom;Han, Min Hee;Yun, Yeoung-Sang
    • Korean Chemical Engineering Research
    • /
    • v.43 no.4
    • /
    • pp.542-547
    • /
    • 2005
  • Biosorption is considered to be a promising alternative to replace or supplement the present methods for the treatment of dye-containing wastewater. In this study, the protonated biomass of Corynebacterium glutamicum was evaluated for its potential to remove two types of reactive dyes (Reactive Red 4, Reactive Blue 4) from aqueous solution. The uptakes of dyes were enhanced with decrease in the solution pH, which was likely because the biomass functional groups increased at acidic pH and the positively charged sites could bind the negatively charged sulfonate group ($dye-SO_3^-$) of dye molecules. An equilibrium state was practically achieved in 10 hr. The Langmuir sorption model was used for the mathematical description of the sorption equilibrium. The maximum sorption capacities of C. glutamicum biomass for Reactive Red 4 and Reactive Blue 4 were estimated to 112.36 mg/g and 263.16 mg/g at pH 1, and 71.94 mg/g and 155.88 mg/g at pH 3.

Methacrylamide graft polymerization on silk fibroin dyed with reactive dyestuffs (반응염색견(反應染色絹)의 Methacrylamide graft 중합(重合))

  • Rhee, In Jeon;Lee, Dong Soo
    • Current Research on Agriculture and Life Sciences
    • /
    • v.12
    • /
    • pp.83-95
    • /
    • 1994
  • Fixation rate of reactive dyes on silk fibroin showed the same tendency to absorption rate. Fixation rate of Yellow 179 and Blue 71 was quite slow and Black 5, Blue 49, Blue 4, Blue 19 and Blue 21 was relatively fast. Weight increase by MAA graft polymerization onto filk fibroin was decreased, on the whole, according to the the increase of dye fixation, but weight increase of silk fibroin dyed with Blue 71 and Blue 21 was much higher than that of silk fibroin. And weight increase of silk fibroin dyed with Yellow 179 was similar to that of silk fibroin and in case of Blue 19, weight increase was about 12%, constantly. Weight increase of silk fibroin dyed with Blue 71 and Blue 21 was higher and the others were lower than of silk fibroin. And weight increase was diminished according as the dyeing temperature rises. The color was a little changed by MAA graft polymerization.

  • PDF

Contribution of Dimer to Reaction and Diffusion of C.I. Reactive Blue 19 in Cellulose (셀루로오즈에서 C.I. Reactive Blue 19의 반응과 확산에 Dimer의 기여)

  • Kim, In-Hoi;Motomura, Hiromi;Morita, Zenzo
    • Textile Coloration and Finishing
    • /
    • v.3 no.4
    • /
    • pp.13-16
    • /
    • 1991
  • C.I. Reactive Blue 19에 대한 hydroxylethylsulfonyl type의 수용액에서의 용해성과 안정성을 조사한 결과 이온강력 0.15, pH 5.8과 9.2에서 초기의 용해도를 4시간 동안 유지했으며, 이온강력을 증가시키면 용해도의 단정성이 감소했다. 그러나 용액의 교반하면 안정성이 증가하여 이온강력 0.30에서 초기용해도가 하루 동안 유지되었다. 셀로판 필름을 원주형태의 롤로 만들어 확산과 흡착 거동을 조사한 결과 hydroxylethylsulfonyl type의 용액 농도가 증가하면 표면농도, $C_0$가 증가했으나 확산계수, D는 일정한 값을 유지했다. Bis(arylsulfonylethyl)ether type의 셀룰로우스와의 반응성은 vinylsulfonyl type에 대해 겉보기 반응속도가 1/6 정도였다.

  • PDF

Thermodynamics of Reactive Dyes with Different Functional Groups (작용기의 종류에 따른 반응염색의 열역학)

  • 도성국
    • Textile Coloration and Finishing
    • /
    • v.10 no.3
    • /
    • pp.36-42
    • /
    • 1998
  • The dyeabilities of C.I. Reactive Blue 19(B19, MW ; 626), C.I. Reactive Blue 4(B4, MW ; 637) and C.I. Reactive Black 5(B5, MW : 991) were investigated. Initial dyeing rates were increased and the amount of dye on the fabric at equilibrium was decreased with temperature like other ordinary dyeing processes. Activation entropy$(\Delta{S}^*)$ was decreased because of loose bonding between dyestuffes and fiber molecules at transition state. It can be clarified that the entire reaction is exothermic and the number of molecular species at transition state becomes greater from decrease in activation enthalpy$(\Delta{H}^*)$ and the increase in activation free energy$(\Delta{G}^*)$ with temperature, respectively. The amount of B19 on the fabric at equilibrium was greater than that of B4, because B4 became unreactive towards textile substrates through hydrolysis. Due to the biggest size of the dye molecule, the reaction rate of B5 was the slowest but its difunctional group played an important role in achieving the greatest amount of dye on the fabric at equilibrium.

  • PDF

A study on the Equilibrium sorption of Silk fibroin by Reactive dye. (견에 대한 반응성 염료의 평형론적 연구)

  • 오병주;탁태문
    • Journal of Sericultural and Entomological Science
    • /
    • v.27 no.2
    • /
    • pp.40-46
    • /
    • 1985
  • The equilibrium sorptions of C.I. Reactive Blue 19 and C.I. Reactive Blue 19 and C.I. Acid Blue 138 on Silk fibroin were investigated in the range of 50$^{\circ}C$, 70$^{\circ}C$, 90$^{\circ}C$ and to the pH range from 2.0 to 10.5. The results obtained are summarized as follows: 1) The amount of sorption of reactive dye was increased with the decrease of pH in dyeing solution and temperature. The amount of fixation showed the maximum value to pH 8.5 and 70$^{\circ}C$. 2) In acidic region, the sorption behavior of acid dye was similar to that of reactive dye, and Langmuir adsorption constant was increased with the decrease of pH. 3) Langmuir constant of both dyes was decreased with the increase of temperature, while standard affinity was increased. 4) The reaction of both dyes was exothermic and the values of $\Delta$S$^{\circ}$ were positive. 5) It was found that the sorption behavior of dyes against Silk fibroin could be described as Langmuir adsorption and Nernst distribution in lower pH region.

  • PDF

Characteristics of Isotherm, Kinetic, and Thermodynamic Parameters for Reactive Blue 4 Dye Adsorption by Activated Carbon (활성탄에 의한 Reactive Blue 4 염료의 흡착에 대한 등온선, 동력학 및 열역학적 특성)

  • Lee, Jong-Jib
    • Clean Technology
    • /
    • v.26 no.2
    • /
    • pp.122-130
    • /
    • 2020
  • The isotherm, kinetic, and thermodynamic parameters of reactive blue 4 adsorbed by activated carbon were investigated for activated carbon dose, pH, initial concentration, contact time, and temperature data. The adsorption of the RB 4 dye by activated carbon showed a concave shape in which the percentage of adsorption increased in both directions starting from pH 7. The isothermal adsorption data were applied to Langmuir, Freundlich, and Temkin isotherms. Both Freundlich and Langmuir isothermal adsorption models fit well. From determined Freundlich separation factor (1/n = 0.125 ~ 0.232) and Langmuir separation factor (RL = 1.53 ~ 1.59), adsorption of RB 4 by activated carbon could be employed as an effective treatment method. The constant related to the adsorption heat (BT = 2.147 ~ 2.562 J mol-1) of Temkin showed that this process was physical adsorption. From kinetic experiments, the adsorption process followed the pseudo second order model with good agreement. The results of the intraparticle diffusion model showed that the inclination of the first straight line representing the surface diffusion was smaller than that of the second straight line representing the intraparticle pore diffusion. Therefore, it was confirmed that intraparticle pore diffusion is the rate-controlling step. The negative Gibbs free energy change (ΔG = -3.262 ~ -7.581 kJ mol-1) and the positive enthalpy change (ΔH = 61.08 kJ mol-1) indicated the spontaneous and endothermic nature of the adsorption process, proving this process to be spontaneous and endothermic.

Study for the separation and comparison of azo dyes and their diazo components (아조염료와 디아조 성분의 분리 및 비교에 관한 연구)

  • Jeong, Hyuk
    • Analytical Science and Technology
    • /
    • v.19 no.1
    • /
    • pp.50-57
    • /
    • 2006
  • Well known environmental wastes from dye industry were separated by the micellar electrokinetic capillary chromatography(MECC). These wastes include H-acid modifier and 2-naphthylamine-1,5-disulfonic acid, and are known to be the diazo components of the azo dye. The results of the separation were compared with the result obtained by the HPLC using ion-pairing mechnism. MECC method was also applied to separate a few direct dyes including Direct Blue 2, Direct Blue 6 and Direct Blue 15, and reactive dye such as Reactive Orange 4. Informations about the diazo components of any azo dye could be obtained by comparison of electropherogram of the reduction solution of given dye with those obtained from standard materials such as H-acid, J-acid, ${\gamma}$-acid, orthanilic acid, sulfanilic acid and 2-naphthylamine-1,5-disulfonic acid which are used as diazo components of the typical azo dyes. It has been concluded that MECC and HPLC with ion-pairing mechanism could be successfully applied for the analysis of unknown dyes and their diazo components.

Removal of Reactive Blue 19 dye from Aqueous Solution Using Natural and Modified Orange Peel

  • Sayed Ahmed, Sohair A.;Khalil, Laila B.;El-Nabarawy, Thoria
    • Carbon letters
    • /
    • v.13 no.4
    • /
    • pp.212-220
    • /
    • 2012
  • Orange peel (OP) exhibits a sorption capacity towards anionic dyes such as reactive blue 19 (RB19). Cetyltrimethylammonium bromide (CTAB) as a cationic surfactant was used to modify the surface nature of OP to enhance its adsorption capacity for anionic dyes from an aqueous solution. Four adsorbents were investigated: the OP, sodium hydroxide-treated OP (SOP), CTAB-modified OP and CTAB-modified SOP. The physical and chemical properties of these sorbents were determined using nitrogen adsorption at 77 K and by scanning electron microscope and Fourier transform infrared spectroscopy techniques. The adsorption of the RB19 dye was assessed with these sorbents at different solution pH levels and temperatures. The effect of the contact time was considered to determine the order and rate constants of the adsorption process. The adsorption data were analyzed considering the Freundlich, Langmuir, Elovich and Tempkin models. The adsorption of RB19 by the assessed sorbents is of the chemisorption type following pseudo-first-order kinetics. CTAB modification brought about a significant increase in RB19 adsorption, which was ascribed to the grafting of the sorbent with a cationic surfactant.