• Title/Summary/Keyword: Reactive Power Variation

Search Result 122, Processing Time 0.026 seconds

Analysis of Active Islanding Dectetion Methods for a Single-phase Photovoltaic Power Conditioning Systems (단상 계통연계형 PCS의 단독운전 검출기법 비교 분석)

  • Jung Youngseok;So Jeonghun;Yu Gwonjong;Kang Gihwan;Choi Jaeho
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.1477-1479
    • /
    • 2004
  • Increasing numbers of photovoltaic arrays are being connected to the power utility through the power conditioning systems (PCS). This has raised potential problems of network protection. If, due to the action of the PCS, the local network voltage and frequency remain within regulatory limits when the utility is disconnected, then islanding is said to occur. In this paper, the representative methods to prevent the islanding are described and a PSIM-based model and analysis of the reactive power variation (RPV) method are presented. A novel phase detector using the all-pass filter and digital phase locked loop (DPLL) is proposed especially for the single-phase PCS. Finally, this paper provides the simulation and experimental results with a single-phase 3kW prototype PCS. Islanding test method of IEEE Std. 929-2000 was performed for verification.

  • PDF

Maximum Modulation Index of VSC HVDC based on MMC Considering Compensation Signals and AC Network Conditions (전력계통 전압 변동과 순환 전류 보상 성분을 고려한 MMC 기반 VSC-HVDC의 최대 변조 지수 선정에 관한 연구)

  • Kim, Chan-Ki;Belayneh, Negesse Belete;Park, Chang-Hwan;Kim, Jang-Mok
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.25 no.1
    • /
    • pp.61-67
    • /
    • 2020
  • This study deals with the modulation index (MI) of a voltage source converter (VSC) HVDC system based on a modular multilevel converter (MMC). In the two-level converter, the purpose of the MI is to maximize the achievable AC voltage of the converter from a fixed DC voltage. Unlike that in a two-level converter, the MI in the MMC topology plays a role in making the converter a voltage source using a capacitor. The circulating current in the MMC distorts the AC voltage reference, and the distortion affects the MI. In addition, the AC network conditions, such as AC voltage variation and reactive power, affect the MI. Therefore, the MI should be optimized with consideration of internal and external factors. This study proposes a method to optimize the MI of an MMC HVDC system.

A DSP Based Active Power Filter with Instantaneous Correlation Power Theory (상관함수에 의한 순시전력이론을 이용한 DSP 능동전력필터)

  • 정영국;임영철
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.4 no.1
    • /
    • pp.50-56
    • /
    • 1999
  • This paper presents consideration on validity of instantaneous correlation power theory. The proposed power theory is defined and analyzed by time domain approach, thus it is easy to understand and instrument. The power is decomposed into active, fundamental reactive and harmonics components based on the autocorrelation and crosscorrelation signal techniques between voltage and current waveforms. On the compensation property, active power filter deal with three components only. Also, for real time control of active power filter, the power models with difficult concept are not cost effective. To verify the validity of the instantaneous correlation power theory, experimental work for voltage type DSP based active power filter is achieved. The power of thyristor controlled motor drives is decomposed into three orthogonal components by proposed power theory. From compensation results, validity of proposed theory is confirmed. feedback controller needs the information on some motor parameters. New recursive adaptation algorithms for rotor resistance and mutual inductance which can be applied to our nonlinear feedback controller are also presented in this paper. The recursive adaptation algorithms make the estimated values of rotor resistance and mutual inductance track their real values. Some simulation and experimental results show that the adaptation algorithms are robust against the variation of stator resistance and stator inductance.

Improved RPV(reactive-power-variation) anti-islanding method for grid-connected three-phase PVPCS (3상 계통연계형 태양광 PCS의 단독운전검출을 위한 개선된 무효전력변동기법)

  • Lee, K.O.;Jung, Y.S.;So, J.H.;Yu, B.G.;Yu, G.J.;Choi, J.Y.;Choy, I.
    • Proceedings of the KIEE Conference
    • /
    • 2006.07b
    • /
    • pp.1159-1160
    • /
    • 2006
  • As the grid-connected photovoltaic power conditioning systems (PVPCS) are installed in many residential areas, this has raised potential problems of network protection on electrical power system. One of the numerous problems is an Island phenomenon. There has been an argument that because the probability of islanding is extremely low it may be a non-issue in practice. However, there are three counter-arguments: First, the low probability of islanding is based on the assumption of 100% power matching between the PVPCS and the islanded local loads. In fact, an island can be easily formed even without 100% power matching (the power mismatch could be up to 30% if only traditional protections are used, e.g. under/over voltage/frequency). The 30% power-mismatch condition will drastically increase the islanding probability. Second, even with a larger power mismatch, the time for voltage or frequency to deviate sufficient to cause a trip, plus the time required to execute the trip (particularly if conventional switchgear is required to operate), can easily be greater than the typical re-close time on the distribution circuit. And, third, the low-probability argument is based on the study of PVPCS. Especially, if the output power of PVPCS equals to power consumption of local loads, it is very difficult for the PVPCS to sustain the voltage and frequency in an island. Unintentional islanding of PVPCS may result in power-quality issues, interference to grid-protection devices, equipment damage, and even personnel safety hazards. So the verification of anti-islanding performance is strongly needed. In this paper, the authors propose the improved RPV method through considering power quality and anti-islanding capacity of grid-connected three-phase PVPCS in IEEE Std 1547 ("Standard for Interconnecting Distributed Resources to Electric Power Systems"). And the simulation and experimental results are verified.

  • PDF

Improved Method of Maximum Loadability Estimation in Power Systems By Transforming the Distorted P-e Curve (왜곡된 P-e곡선의 변환에 의한 전력계통 최대허용부하의 향상된 추정 방법)

  • Hwang, Ji-Hwan;Choi, Byoung-Kon;Cho, Byoung-Hoon;Moon, Young-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 2000.07a
    • /
    • pp.363-365
    • /
    • 2000
  • This paper presents an improved method to estimate the maximum load level for heavily loaded power systems with the load-generation variation vector by using the elliptic pattern of the P-e curve. The previous study suggested a simple technique of removing e-f coupling, where only high voltage load flow solutions to calculate transforming angle of system reference is needed. The proposed algorithm is improved to require only one load flow solution at a specific load level in addition to the operating point at the beginning stage, which reduces the computation time and the iteration number of estimation. The proposed method can be efficiently applied to heaviIy loaded systems with the combination of CPFlow when the reactive power limit and ULTC are considered. In this paper, the effect of ULTC on the estimation of maximum loadability index is also investigated. The proposed algorithm is tested on New England 39 bus system and IEEE 118 bus system.

  • PDF

Wireless Parallel Operation Control of N+l Redundant UPS System (독립제어구조를 갖는 N+1 모듈형 UPS 시스템의 병렬운전)

  • 조준석;한재원;최규하
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.7 no.5
    • /
    • pp.499-508
    • /
    • 2002
  • In this paper, a novel wireless parallel operation algorithm of N+l redundant UPS system with no control interconnections for load-sharing is presented. The proposed control system eliminates the sensing noise and interconnections interference of conventional parallel operation system. To reduce a reactive power deviation in wireless control method, this technique automatically compensates for inverter parameter variation and line impedance imbalances with wireless auto-tuning method. In addition, to increase reliability on transient characteristics of parallel operation, a virtual injected impedance is adopted to eliminate a circulation current among inverter modules. Simulation results are provided in this paper to prove the proposed novel wireless algorithm.

An Analysis and Design of RPV and AFD Method for Anti-Islanding of Single-Phase UIPV System under The Test Condition Recommended by IEEE 929-2000 (IEEE 929-2000 단독운전 시험조건 하에서 단상 계통연계형 PV 시스템의 Anti-Islanding을 위한 RPV 방식 및 AFD방식의 해석 및 설계)

  • Kim, Hong-Sung;Kim, Han-Goo;Choe, Gyu-Ha;Kim, Jae-Chul;Choi, Yung-Ho
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.12 no.1
    • /
    • pp.37-49
    • /
    • 2007
  • To detect islanding mode when the grid is being tripped is a major safety issue in utility interactive PV(UIPV) system. Widely used techniques among various active methods to detect islanding mode are Reactive power variation (RPV)method and Active frequency drift(AFD) method. In this paper, analytical design method is suggested for AFD and RPV method under IEEE recommended islanding test condition. And in order to show the validity of proposed method, EMTP based simulation was done for UIPV system with RPV method and AFD method. Results shows proposed method is very useful.

Design of Anti-Islanding Algorithm for Utility interactive Photovoltaic System (계통연계형 태양광 발전시스템에서 역충전방지 알고리즘 설계)

  • Gho, J.S.;Kim, H.S.;Choe, G.H.;Kim, H.S.;Lee, Y.J.;You, G.J.;Song, J.S.
    • Proceedings of the KIEE Conference
    • /
    • 1995.07a
    • /
    • pp.440-442
    • /
    • 1995
  • In a recently as renewable energy source photovoltaic(PV) system using solar energy has been very widely researched because of its pollution-free and infinity. Especially many researches are intensively focused on small scale utility interactive PV system which can use dead space and easily make power stabilized from unstable natural energy source. In this system one of the most important matters is islanding protection. Islanding phenomenon appears when power failure occurs. For the safety of utility interactive PV system must has the function of not only system protection but also detection of islanding. This paper describes parallel operating alghorithm using reactive power variation method and twin peak band pass filter. This alghorithm is verified useful by simulation.

  • PDF

A Study on the Power Factor Improvement of V47-660 kW Wind Turbine Generation System in Jeju Wind Farm (제주 풍력발전 단지의 V47-660 kW 시스템의 역률개선에 관한 연구)

  • Kim, Eel-Hwan;Jeon, Young-Jin;Kim, Jeong-Woong;Kang, Geong-Bo;Huh, Jong-Chul;Kim, Gun-Hoon
    • Journal of the Korean Solar Energy Society
    • /
    • v.23 no.3
    • /
    • pp.45-53
    • /
    • 2003
  • This paper presents a study on the power factor improvement of V47- 660 [kW] Wind Turbine Generation System (WTGS) in Jeju wind farm, as a model system in this paper. In this system, the power factor correction is controlled by the conventional method with power condensor banks. Also, this system has only four bank steps, and each one capacitor bank step is cut in every one second when the generator has been cut in. This means that it is difficult to compensate the reactive power exactly according to the variation of them. Actually, model system has very low power factor in the area of low wind speed, which is almost from 4 to 6 [m/s]. This is caused by the power factor correction using power condenser bank. To improve the power factor in the area of low wind speed, we used the static var compensator(SVC) using current controlled PWM power converter using IGBT switching device. Finally, to verify the proposed method, the results of computer simulation using Psim program are presented to support the discussions.

The Identification of Load Characteristic using Artificial Neural Network for Load Modeline (부하모델을 위한 신경회로망을 이용한 부하특성 식별)

  • 임재윤;김태응;이종필;지평식;남상천;김정훈
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.12 no.1
    • /
    • pp.103-110
    • /
    • 1998
  • The modeling of load characteristics is a difficult problem because of uncertainty of load. This research uses artificial neural networks which can approximate nonlinear problem to represent load characteristics. After the selection of typical load, active and reactive power for the variation of voltage and frequency is obtained from experiments. We constructed and learned ANN based on these data for component load identification. The learned ANN identified load characteristics for other voltage and/or frequency variation. In addition, the results of component load identification are presented to demonstrate the potentiality of the proposed method.method.

  • PDF