• 제목/요약/키워드: Reactive Oxygen Species Stress

검색결과 1,013건 처리시간 0.03초

The Effect of the SOD2 and SOD3 in Candida albicans on the Antioxidant System and its Potential as a Natural Antioxidant

  • Yeonju HONG;Min-Kyu KWAK
    • 식품보건융합연구
    • /
    • 제10권2호
    • /
    • pp.13-17
    • /
    • 2024
  • Oxygen is necessary to sustain life, but reactive oxygen species (ROS) produced by oxygen metabolism can cause mutations and toxicity. ROS can damage cellular macromolecules, leading to oxidative stress, which can accelerate cell death and aging. ROS generated in food affect the taste, color, and aroma of food, and high levels of ROS in meat can cause spoilage. Superoxide dismutase (SOD) plays an important role in scavenging ROS in food and reducing their toxicity to organisms. SOD exerts its antioxidant effect by catalyzing the breakdown of O2-• to H2O2. As a natural antioxidant, SOD has the ability to regenerate and maintain its activity over a long period of time without depletion, unlike chemical antioxidants that may have side effects or stability issues. This antioxidant effect of SOD has great potential in a variety of industries, and in the food industry it can be utilized to improve product quality and provide safe and healthy products to consumers. By disrupting the SOD2 and SOD3 genes in Candida albicans, we studied the effects of SOD2 and SOD3 genes on the antioxidant system, suggesting its potential as a natural antioxidant.

Oxidative Stress and Skin Diseases: Possible Role of Physical Activity

  • Kruk, Joanna;Duchnik, Ewa
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권2호
    • /
    • pp.561-568
    • /
    • 2014
  • Background: The skin is the largest body organ that regulates excretion of metabolic waste products, temperature, and plays an important role in body protection against environmental physical and chemical, as well as biological factors. These include agents that may act as oxidants or catalysts of reactions producing reactive oxygen species (ROS), reactive nitrogen species (RNS), and other oxidants in skin cells. An increased amount of the oxidants, exceeding the antioxidant defense system capacity is called oxidative stress, leading to chronic inflammation, which, in turn, can cause collagen fragmentation and disorganization of collagen fibers and skin cell functions, and thus contribute to skin diseases including cancer. Moreover, research suggests that oxidative stress participates in all stages of carcinogenesis. We report here a summary of the present state of knowledge on the role of oxidative stress in pathogenesis of dermatologic diseases, defensive systems against ROS/RNS, and discuss how physical activity may modulate skin diseases through effects on oxidative stress. The data show duality of physical activity actions: regular moderate activity protects against ROS/RNS damage, and endurance exercise with a lack of training mediates oxidative stress. These findings indicate that the redox balance should be considered in the development of new antioxidant strategies linked to the prevention and therapy of skin diseases.

A Study on The Mechanism of Oxidative Stress, Screening of Protective Agents and Signal Transduction of Cell Differentiation in Cultured Osteoblast and Osteoclast Damaged by Reactive Oxygen Species

  • Park, Seung-Taeck;Han, Du-Suk
    • 한국독성학회:학술대회논문집
    • /
    • 한국독성학회 2003년도 춘계학술대회 논문집
    • /
    • pp.66-67
    • /
    • 2003
  • It is well known that osteoblasts and osteoc1asts playa key role in bone metabolism. They involve in osteoformation or bone destruction which are ragulated by various factors such as thyroid hormone, parathyroid hormone, estrogen, growth factor and cytokine. Recently, it is demonstrated that oxidative stress is one of pathological factors in bone metabolism, but it is left unknown about mechanism between oxidative stress and bone metabolism.(omitted)

  • PDF

Antioxidant activity of flavonoid, myricetin and (+)-catechin on B16F10 murine melanoma cell in oxidative stress with hydrogen peroxide

  • Yu, Ji-Sun;Kim, An-Keun
    • 대한약학회:학술대회논문집
    • /
    • 대한약학회 2003년도 Proceedings of the Convention of the Pharmaceutical Society of Korea Vol.1
    • /
    • pp.211.1-211.1
    • /
    • 2003
  • There are now increasing evidences that free radicals and reactive oxygen species are involved in a variety of pathological events. Flavonoids. a group of polypenolic compounds, are widespread in the human food supply. This study was carried out to investigate the antioxidant activity of these compounds. myriceitn and (+)-catechin on B 16Fl0. murine melanoma cell line in oxidative stress. Oxidative stress was induced by exposure to hydrogen peroxide. (omitted)

  • PDF

스트레스로 인한 뇌조직의 산화적 손상에서 Vitamin E의 방어 효과 (Protectins Effects of Vitamin E against Immobilization Stress-Induced Oxidative Damage in Rat Brain)

  • 박미현;강상모;정혜영;홍성길
    • Journal of Nutrition and Health
    • /
    • 제36권6호
    • /
    • pp.570-576
    • /
    • 2003
  • 스트레스에 의해서 생체는 에너지 대사를 증가시키며, 에너지 대사의 증가는 높은 반응성의 ROS를 생성한다. ROS는 높은 반응성으로 인해 지질, 단백질 등을 과산화시켜 원래의 활성을 잃게 한다. 이런 ROS에 대해서 높은 소거능을 지닌 vitamin I의 투여는 스트레스로 인한 생체내 산화적 손상을 억제할 수 있을 것으로 생각된다. 이런 효능을 확인하기 위하여 실험용 흰 쥐에게 4주간의 noise 및 고정화 스트레스를 가한 결과, 스트레스를 가함으로서 체중증가량을 감소시켰으며, 스트레스 지표 물질인 5-HIAA와 혈청내 유리 지방산의 증가 및 뇌조직의 산화적 손상이 증가되어 정상적으로 스트레스가 가해졌음을 확인할 수 있었다. 또한, vitamin E 투여군의 경우 혈청내에서의 vitamin E 농도가 유의적으로 증가하여 정상적인 vitamin E의 투여도 이루어졌음을 확인하였다. Vitamin E의 투여는 스트레스로 인한 체중 증가량의 감소를 억제하였으며, 또한 뇌조직의 단백질 및 지질의 산화적 손상을 억제하는 효능을 보였으며, SOD의 활성 또한 증가시키는 효능을 나타냈다. 따라서, vitamin E 투여는 스트레스로 인하여 발생하는 뇌조직의 산화적 손상을 억제함으로서 스트레스에 대한 방어 효능이 일부 있는 것으로 생각된다.

항산화효소 유전자를 이용한 산업용 형질전환식물체 개발 (Development of Industrial Transgenic Plants Using Antioxidant Enzyme Genes)

  • 이행순;김기연;권석윤;곽상수
    • 한국식물생명공학회:학술대회논문집
    • /
    • 한국식물생명공학회 2002년도 추계학술대회
    • /
    • pp.49-58
    • /
    • 2002
  • Oxidative stress derived from reactive oxygen species (ROS) is one of the major damaging factors in plants exposed to environmental stress. In order to develop the platform technology to solve the global food and environmental problems in the 21s1 century, we focus on the understanding of the antioxidative mechanism in plant cells, the development of oxidative stress-inducible antioxidant genes, and the development of transgenic plants with enhanced tolerance to stress. In this report, we describe our recent results on industrial transgenic plants by the gene manipulation of antioxidant enzymes. Transgenic tobacco plants expressing both superoxide dismutase (SOD) and ascorbate peroxidase (APX) in chloroplasts were developed and were evaluated their protection effects against stresses, suggesting that simultaneous overexpression of both SOD and APX in chloroplasts has synergistic effects to overcome the oxidative stress under unfavorable environments. Transgenic tobacco plants expressing a human dehydroascorbate reductase gene in chloroplasts were showed the protection against the oxidative stress in plants. Transgenic cucumber plants expressing high level of SOD in fruits were successfully generated to use the functional cosmetic purpose as a plant bioreactor. In addition, we developed a strong oxidative stress-inducible peroxidase promoter, SWPA2 from sweetpotato (Ipomoea batatas). We anticipate that SWPA2 promoter will be biotechnologically useful for the development of transgenic plants with enhanced tolerance to environmental stress and particularly transgenic cell lines engineered to produce key pharmaceutical proteins.

  • PDF

Explicating morphophysiological and biochemical responses of wheat grown under acidic medium: Insight into to the antioxidant defense and glyoxalase systems

  • Bhuyan, MHM Borhannuddin;Hasanuzzaman, Mirza;Al Mahmud, Jubayer;Hossain, Md. Shahdat;Alam, Mazhar Ul;Fujita, Masayuki
    • 한국작물학회:학술대회논문집
    • /
    • 한국작물학회 2017년도 9th Asian Crop Science Association conference
    • /
    • pp.236-236
    • /
    • 2017
  • Low soil pH causes from $H^+$ rhizotoxicity results in nutrients unavailability in the growing media, inhibits plant growth, development and reduces crop yields. The present study was carried out to reveal morpholophysiological and biochemical responses of wheat (Triticum aestivum L.) to acidity stress. Four wheat varieties viz. BARI Wheat-21, BARI Wheat-25, BARI Wheat-26 and BARI Wheat-30 were used in the study. Eight-day-old seedlings were exposed to different pH levels (3.5, 4.5, 5.5 and 6.5) of growing media. Acidity stress at any level reduced biomass, water, and chlorophyll contents in all the varieties; whereas BARI Wheat-26 showed the least damage. $H^+$ rhizotoxicity also caused oxidative stress through excess production of reactive oxygen species and methylglyoxal which increase lipid peroxidation in all the varieties but the lowest oxidative damage was observed in BARI Wheat-26 due to better performance of the antioxidant defense and glyoxalase systems. Considering the growth, physiological and biochemical attributes BARI Wheat-26 may be considered as acidity stress tolerant, among the variety examined.

  • PDF

배양 인체피부섬유모세포에 있어서 활성산소의 산화적 손상에 대한 산사(山査)추출물의 항산화 효과 (Antioxidant Effect of Crataegi Fructus Extract on the Oxidative Stress of Reactive Oxygen Species in Cultured Human Skin Fibroblast)

  • 임영미;김병륜;홍기연
    • 동의생리병리학회지
    • /
    • 제22권1호
    • /
    • pp.115-119
    • /
    • 2008
  • This study was done to evaluate the antioxidant effect of Crataegi Fructus (CF) extract on the oxidative stress induced by reactive oxygen species (ROS), The human skin fibroblasts (Detroit 551) were cultured with various concentrations of hydrogen peroxide $(H_2O_2)$. The cytotoxicity of $H_2O_2-induced$ oxidative stress was performed by XTT assay for the cell viability according to the dose- and time-dependent treatment. For the protective effect of CF extract on $H_2O_2-mediated$ oxidative stress, cell viability, lactate dehydroganase (LDH) activity, and ferric thiocyanate (FTC) assay for the inhibitive activity of lipid peroxidation on CF extract were carried out. In this study, $H_2O_2-mediated$ oxidative stress was decreased cell viability dose-, and time-dependent manner and increased LDH activity compared with the control in these cultures. In the protective effect, CF extract increased cell viability and decreased LDH activity on $H_2O_2-mediated$ oxidative stress, especially, CF extract has antioxidant effect by the showing the inhibitive activity of lipid peroxidation by FTC assay. From these results, It is suggested that $H_2O_2-mediated$ oxidative stress was highly toxic, and also, CF extract showed the protective effect on $H_2O_2-mediated$ oxidative stress by showing the increased cell viability, decreased LDH activity and lipid peroxidation inhibition in these cultures.

팔물탕의 항산화 효과와 자외선으로 유도된 각질형성세포 손상에 대한 보호효과 (Antioxidant and Protective Effects of Palmul-tang on Ultraviolet B (UVB)-induced Damage in Human Keratinocytes)

  • 김태연;박종필
    • 대한예방한의학회지
    • /
    • 제19권3호
    • /
    • pp.141-154
    • /
    • 2015
  • Objective : In this paper, we investigated the anti-oxidative capacities and protective effects of water extract of palmul-tang (PMT) against Ultraviolet B(UVB)-induced oxidative damage in human keratinocytes(HaCaT). Method : To evaluate the anti-oxidative activities of PMT, we measured scavenging activities on 1,1-diphenyl-2-picrylhydrazyl(DPPH) radical, hydroxyl radical, hydrogen peroxide, superoxide anion, lipid peroxidation and reducing power of PMT. To give an oxidative stress to HaCaT cells, UVB was irradiated with $40mJ/cm^2$ to HaCaT cells. To detect the protective effects of PMT against UVB, we measured cell viability, apoptotic bodies and reactive oxygen species(ROS) generation. Results : PMT showed the anti-oxidative activities by scavenging DPPH radical, hydroxyl radical, hydrogen peroxide, superoxide anion, lipid peroxidation. Also PMT showed high reducing values. The UVB-induced oxidative conditions led to the cell apoptosis. However, treatment with PMT reduced oxidative stress conditions, including inhibition of cell apoptosis and expression of ROS. Conclusion : PMT had anti-oxidative activities and exhibited protective effects against UVB on HaCaT cells. PMT would be useful for the development of cosmetics treating UVB-induced skin aging.