DOI QR코드

DOI QR Code

The Effect of the SOD2 and SOD3 in Candida albicans on the Antioxidant System and its Potential as a Natural Antioxidant

  • Yeonju HONG (Laboratory of Microbial Physiology and Biotechnology, Department of Food and Nutrition, College of Bio-Convergence, and Institute of Food and Nutrition Science, Eulji University) ;
  • Min-Kyu KWAK (Laboratory of Microbial Physiology and Biotechnology, Department of Food and Nutrition, College of Bio-Convergence, and Institute of Food and Nutrition Science, Eulji University)
  • Received : 2024.03.01
  • Accepted : 2024.03.14
  • Published : 2024.03.30

Abstract

Oxygen is necessary to sustain life, but reactive oxygen species (ROS) produced by oxygen metabolism can cause mutations and toxicity. ROS can damage cellular macromolecules, leading to oxidative stress, which can accelerate cell death and aging. ROS generated in food affect the taste, color, and aroma of food, and high levels of ROS in meat can cause spoilage. Superoxide dismutase (SOD) plays an important role in scavenging ROS in food and reducing their toxicity to organisms. SOD exerts its antioxidant effect by catalyzing the breakdown of O2-• to H2O2. As a natural antioxidant, SOD has the ability to regenerate and maintain its activity over a long period of time without depletion, unlike chemical antioxidants that may have side effects or stability issues. This antioxidant effect of SOD has great potential in a variety of industries, and in the food industry it can be utilized to improve product quality and provide safe and healthy products to consumers. By disrupting the SOD2 and SOD3 genes in Candida albicans, we studied the effects of SOD2 and SOD3 genes on the antioxidant system, suggesting its potential as a natural antioxidant.

Keywords

Acknowledgement

We thank W.A. Fonzi, M. Whiteway, and G.R. Fink for providing the C. albicans strains and plasmids.

References

  1. Bafana, A., Dutt, S., Kumar, A., Kumar, S., & Ahuja, P.S. (2011). The basic and applied aspects of superoxide dismutase. Journal of Molecular Catalysis B: Enzymatic, 68(2), 129-138. https://doi.org/10.1016/j.molcatb.2010.11.007
  2. Buonocore, G., Perrone, S., & Tataranno, M. L. (2010). Oxygen toxicity: chemistry and biology of reactive oxygen species, Seminars in Fetal and Neonatal Medicine. Elsevier, pp. 186-190.
  3. Chaves, G. M., & Silva, W. P. D. (2012). Superoxide dismutases and glutaredoxins have a distinct role in the response of Candida albicans to oxidative stress generated by the chemical compounds menadione and diamide. Memorias do Instituto Oswaldo Cruz, 107, 998-1005. https://doi.org/10.1590/S0074-02762012000800006
  4. Davis, D. (2003). Adaptation to environmental pH in Candida albicans and its relation to pathogenesis. Current genetics, 44, 1-7. https://doi.org/10.1007/s00294-003-0415-2
  5. Falowo, A.B., Fayemi, P.O., & Muchenje, V. (2014). Natural antioxidants against lipid-protein oxidative deterioration in meat and meat products: A review. Food research international, 64, 171-181. https://doi.org/10.1016/j.foodres.2014.06.022
  6. Fattman, C.L., Schaefer, L.M., & Oury, T.D. (2003). Extracellular superoxide dismutase in biology and medicine. Free Radical Biology and Medicine, 35(3), 236-256. https://doi.org/10.1016/S0891-5849(03)00275-2
  7. Feng, Q., Summers, E., Guo, B., & Fink, G. (1999). Ras signaling is required for serum-induced hyphal differentiation in Candida albicans. Journal of bacteriology, 181(20), 6339-6346. https://doi.org/10.1128/JB.181.20.6339-6346.1999
  8. Fonzi, W.A., & Irwin, M. (1993). Isogenic strain construction and gene mapping in Candida albicans. Genetics, 134(3), 717-728. https://doi.org/10.1093/genetics/134.3.717
  9. Gogliettino, M., Arciello, S., Cillo, F., Carluccio, A.V., Palmieri, G., Apone, F., Ambrosio, R.L., Anastasio, A., Gratino, L., & Carola, A. (2022). Recombinant Expression of Archaeal Superoxide Dismutases in Plant Cell Cultures: A Sustainable Solution with Potential Application in the Food Industry. Antioxidants, 11(9), 1731.
  10. Hwang, C.S., Rhie, G., Oh, J.H., Huh, W. K., Yim, H. S., & Kang, S. O. (2002). Copper-and zinc-containing superoxide dismutase (Cu/ZnSOD) is required for the protection of Candida albicans against oxidative stresses and the expression of its full virulence. Microbiology 148(11), 3705-3713. https://doi.org/10.1099/00221287-148-11-3705
  11. Hwang, C.S., Oh, J.H., Huh, W.K., Yim, H.S., & Kang, S.O. (2003). Ssn6, an important factor of morphological conversion and virulence in Candida albicans. Molecular microbiology, 47(4), 1029-1043. https://doi.org/10.1046/j.1365-2958.2003.03353.x
  12. Kojic, E. M., & Darouiche, R.O. (2004). Candida infections of medical devices. Clinical microbiology reviews, 17(2), 255-267. https://doi.org/10.1128/CMR.17.2.255-267.2004
  13. Liang, Y., Han, Y., Dan, J., Li, R., Sun, H., Wang, J., & Zhang, W. (2023). A high-efficient and stable artificial superoxide dismutase based on functionalized melanin nanoparticles from cuttlefish ink for food preservation. Food Research International, 163, 112211.
  14. Manchenko, G. (1994). Superoxide dismutase. Handbook of Detection of Enzymes on Electrophoretic Gels, 98.
  15. Menvielle-Bourg, F. J. (2005). Superoxide dismutase (SOD), a powerful antioxidant, is now available orally. Phytotherapie, 3, 1-4. https://doi.org/10.1007/s10298-005-0057-2
  16. Palma, F.R., He, C., Danes, J. M., Paviani, V., Coelho, D.R., Gantner, B. N., & Bonini, M.G. (2020). Mitochondrial superoxide dismutase: what the established, the intriguing, and the novel reveal about a key cellular redox switch. Antioxidants & Redox Signaling, 32(10), 701-714. https://doi.org/10.1089/ars.2019.7962
  17. Wang, Y., Branicky, R., Noe, A., & Hekimi, S. (2018). Superoxide dismutases: Dual roles in controlling ROS damage and regulating ROS signaling. Journal of Cell Biology, 217(6), 1915-1928. https://doi.org/10.1083/jcb.201708007
  18. Wu, D., & Cederbaum, A.I. (2003). Alcohol, oxidative stress, and free radical damage. Alcohol research & health, 27(4), 277.
  19. Younus, H. (2018). Therapeutic potentials of superoxide dismutase. International journal of health sciences, 12(3), 88.