• 제목/요약/키워드: Reactive Method

검색결과 1,517건 처리시간 0.03초

해양 소수력발전용 유도발전기의 최적 무효전력 산정방식에 관한 연구 (A Study on the Optimal Reactive Power Calculation Method of Induction Generator for Marine Small Hydraulic Power)

  • 이원재;오용택
    • 조명전기설비학회논문지
    • /
    • 제27권9호
    • /
    • pp.100-107
    • /
    • 2013
  • Since the West Sea experiences a big difference in tides, the output power of the small marine hydroelectric power plant varies with the tide. When an induction generator is used here for small hydroelectric power, the reactive power capacitor should be installed at the generator main bus to compensate for the changes in power. As such, the sizing method for the power compensation of the induction generator is reviewed and an optimal method for compensation is suggested. The self-excitation minimum capacitor capacity method, which prevents high voltages, and the power factor automatic control method, which retains a power factor of greater than 90% are reviewed. The compensation effect of reactive power is confirmed through a case study.

무효전력 흐름 추적을 이용한 무효전력 취약지역 판단 (Reactive Power Traceable System based Vulnerable Areas Detection for Reactive Power)

  • 최윤혁;배문성;이병준
    • 전기학회논문지
    • /
    • 제64권8호
    • /
    • pp.1145-1153
    • /
    • 2015
  • The paper analyzes reactive power flow characteristic in power system by reactive power tracing. In addition, virtual buses are inserted in the algorithm to consider losses of transmission lines, and shunt capacitor treated as a reactive power generator. The results of simulation are analyzed by two points of view. The one is load’s point of view and another is generator’s point of view. Classic purpose of the reactive power tracing consists in the reactive power pricing. However, it is significantly used to select vulnerable area about line outage in this paper. To find the vulnerable area, reactive power tracing variations between pre-contingency and post-contingency are calculated at all load buses. In heavily load area, buses which has highest variation become the most vulnerable bus. This method is applied to the IEEE 39-bus system. It is compared with voltage variation result and VQ-margin to verify its effect.

Short-term Reactive Power Reserve Optimization Based on Trajectory Sensitivity

  • Sun, Quancai;Cheng, Haozhong;Zhang, Jian;Li, Baiqing;Song, Yue
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권2호
    • /
    • pp.541-548
    • /
    • 2017
  • An increasing concern is paid to short-term voltage stability with the growth of penetration of induction motor loads. Reactive power reserve(RPR) of power system is critical to improve voltage stability. A definition of short-term voltage stability-related RPR(SVRPR) is proposed. Generators vary their contributions to voltage stability with their location and system condition, etc. Voltage support coefficient based on the second-order trace sensitivity method is proposed to evaluate SVRPR's contribution to short-term voltage stability. The evaluation method can account for the generator's reactive support in transient process and the contingency severity. Then an optimization model to improve short-term voltage stability is built. To deal with multiple contingencies, contingency weight taking into account both its probability and severity is proposed. The optimization problem is solved by primal dual interior point method. Testing on IEEE_39 bus system, it is indicated that the method proposed is effective. Short-term voltage stability is improved significantly by the way of SVRPR optimization. Hence, the approach can be used to prevent the happening of voltage collapse during system's contingency.

Coordinated Voltage and Reactive Power Control Strategy with Distributed Generator for Improving the Operational Efficiency

  • Jeong, Ki-Seok;Lee, Hyun-Chul;Baek, Young-Sik;Park, Ji-Ho
    • Journal of Electrical Engineering and Technology
    • /
    • 제8권6호
    • /
    • pp.1261-1268
    • /
    • 2013
  • This study proposes a voltage and reactive coordinative control strategy with distributed generator (DG) in a distribution power system. The aim is to determine the optimum dispatch schedules for an on-load tap changer (OLTC), distributed generator settings and all shunt capacitor switching on the load and DG generation profile in a day. The proposed method minimizes the real power losses and improves the voltage profile using squared deviations of bus voltages. The results indicate that the proposed method reduces the real losses and voltage fluctuations and improve receiving power factor. This paper proposes coordinated voltage and reactive power control methods that adjust optimal control values of capacitor banks, OLTC, and the AVR of DGs by using a voltage sensitivity factor (VSF) and dynamic programming (DP) with branch-and-bound (B&B) method. To avoid the computational burden, we try to limit the possible states to 24 stages by using a flexible searching space at each stage. Finally, we will show the effectiveness of the proposed method by using operational cost of real power losses and voltage deviation factor as evaluation index for a whole day in a power system with distributed generators.

The Coordinate Control Method of LTC Transformer and Capacitor Banks at Distribution Substation

  • Choi, Joon-Ho;Ahn, Seon-Ju;Nam, Hae-Kon;Kim, Jae-Chul;Moon, Seung-Il;Jung, Won-Wook;Song, Il-Keun
    • Journal of Electrical Engineering and Technology
    • /
    • 제7권3호
    • /
    • pp.320-329
    • /
    • 2012
  • The Load Tap Changing (LTC) transformer and Shunt Capacitor (SC) bank are major devices for voltage and reactive power control in a distribution substation. Thus, the coordination operation of a LTC transformer and a SC bank is required to achieve better voltage and reactive power compensation at a distribution substation in the same time. This paper proposes coordinate control method of LTC transformer and SC bank to achieve better voltage and reactive power compensation and operation times of these two devices in the same time. The mathematical formulations of the proposed coordinate control method are introduced. Sample case studies are shown to verify the effectiveness of the proposed coordinate control method.

배전 선로에 연계된 다수대의 변동성 재생에너지 발전 시스템의 출력 유효전력 변동에 따른 무효전력 제어를 이용한 전압 변동 보상 (Compensation of Voltage Variation Using Active Power-Dependent Reactive Power Control with Multiple VRE Systems Connected in a Distribution Line)

  • 이상훈;김수빈;송승호
    • 풍력에너지저널
    • /
    • 제9권4호
    • /
    • pp.47-56
    • /
    • 2018
  • This paper introduces an active power dependent standard characteristic curve, Q(P) to compensate for voltage variations due to the output of distributed generation. This paper presents an efficient control method of grid-connected inverters by comparing and analyzing voltage variation magnitude and line loss according to the compensation method. Voltage variations are caused not only by active power, but also by the change of reactive power flowing in the line. In particular, the system is in a relatively remote place in a coastal area compared with existing power plants, so it is relatively weak and may not be suitable for voltage control. So, since it is very important to keep the voltage below the normal voltage limit within the specified inverter capacity and to minimize line loss due to the reactive power. we describe the active power dependent standard characteristic curve, Q(P) method and verify the magnitude of voltage variation by simulation. Finally, the characteristics of each control method and line loss are compared and analyzed.

변전소 조상 설비간의 협조 제어를 위한 EMTP 과도해석모형 개발 (EMTP Simulation for the Dynamic Analysis of a STATCOM-Shunts-OLTC Coordination in Substation)

  • 정기석;백영식;박지호;장병훈;이현철;이근준
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2009년도 제40회 하계학술대회
    • /
    • pp.237_238
    • /
    • 2009
  • This paper proposes coordinative control method between STATCOM installed within substation and other reactive power resources including Shunt Reactors and Shunt Capacitors and OLTC. Voltage/Reactive power control has various difficult aspects to control because of analysis and system dynamics error. This coordinative control method suggests practical algorithm regarding system voltage and reactive power status which is easy to implement in substation basis. In normal status, STATCOM-Shunts-OLTC are in operation. The proposed algorithm is tested and verified in EMTP/RV. And this is expected to be applied to control multiple reactive power devices combined with SCADA/EMS system.

  • PDF

Distributed Adaptive Virtual Impedance Control to Eliminate Reactive Power Sharing Errors in Single-Phase Islanded Microgrids

  • Hoang, Tuan V.;Lee, Hong-Hee
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2017년도 전력전자학술대회
    • /
    • pp.120-121
    • /
    • 2017
  • This paper proposes an enhanced distributed generation (DG) unit with an adaptive virtual impedance control approach in order to address the inaccurate reactive power sharing problem. The proposed method can adaptively regulate the DG virtual impedance, and the effect of the mismatch in feeder impedances is compensated to share the reactive power accurately. The proposed control strategy is fully distributed and the need for the microgrid central controller is eliminated. Furthermore, the proposed method can be directly implemented without requirement of pre-knowledge of the feeder impedances. Simulations are performed to validate the effectiveness of the proposed control approach.

  • PDF

발전기 무효전력 성능시험 절차 개발 (Development of Generator Reactive Capability Test Method in Generation Stations)

  • 신만수;정태원
    • 전기학회논문지
    • /
    • 제60권5호
    • /
    • pp.936-941
    • /
    • 2011
  • Generation cooperations have focused on active power directly related to economic value. So, utility cooperation have taken expense to stabilize power system, although generator has responded quickly with variation of power system voltage and is controlled at real time. As a reactive power source, it is necessary for generator's capabilities to be verified. But domestic generators scarcely have been tested and operated to reactive power capability. In case of power system fault, operators would not quickly take a follow-up actions about reactive power disturbance. Therefore generator reactive power capability verification strategy must be developed, several generators is tested as examples since 2004. This paper is extracted from the test results.

Research on Voltage Stability Boundary under Different Reactive Power Control Mode of DFIG Wind Power Plant

  • Ma, Rui;Qin, Zeyu;Yang, Wencan;Li, Mo
    • Journal of Electrical Engineering and Technology
    • /
    • 제11권6호
    • /
    • pp.1571-1581
    • /
    • 2016
  • A novel method is proposed to construct the voltage stability boundary of power system considering different Reactive Power Control Mode (RPCM) of Doubly-Fed Induction Generator (DFIG) Wind Power Plant (WPP). It can be used for reflecting the static stability status of grid operation with wind power penetration. The analytical derivation work of boundary search method can expound the mechanism and parameters relationship of different WPP RPCMs. In order to improve the load margin and find a practical method to assess the voltage security of power system, the approximate method of constructing voltage stability boundary and the critical points search algorithms under different RPCMs of DFIG WPP are explored, which can provide direct and effective reference data for operators.