• 제목/요약/키워드: Reactive Current Injection

검색결과 27건 처리시간 0.02초

Synchronous Carrier-based Pulse Width Modulation Switching Method for Vienna Rectifier

  • Park, Jin-Hyuk;Yang, SongHee;Lee, Kyo-Beum
    • Journal of Power Electronics
    • /
    • 제18권2호
    • /
    • pp.604-614
    • /
    • 2018
  • This paper proposes a synchronous switching technique for a Vienna rectifier that uses carrier-based pulse width modulation (CB-PWM). A three-phase Vienna rectifier, similar to a three-level T-type converter with three back-to-back switches, is used as a PWM rectifier. Conventional CB-PWM requires six independent gate signals to operate back-to-back switches. When internal switches are operated synchronously, only three independent gate signals are required, which simplifies the construction of gate driver circuits. However, with this method, total harmonic distortion of the input current is higher than that with conventional CB-PWM switching. A reactive current injection technique is proposed to improve current distortion. The performance of the proposed synchronous switching method and the effectiveness of the reactive current injection technique are verified using simulations and experiments performed with a set of Vienna rectifiers rated at 5 kW.

최대 전압 강하에 비례하는 무효전류 공급 루프를 이용한 DFIG 풍력단지의 계층전압제어 (Hierarchical Voltage Regulation of a DFIG-based Wind Power Plant Using a Reactive Current Injection Loop with the Maximum Voltage Dip for a Grid Fault)

  • 박건;김진호;강용철
    • 전기학회논문지
    • /
    • 제65권8호
    • /
    • pp.1334-1339
    • /
    • 2016
  • In a power grid that has a high wind power penetration, the fast voltage support of a wind power plant (WPP) during the grid fault is required to stabilize the grid voltage. This paper proposes a voltage control scheme of a doubly-fed induction generator (DFIG)-based WPP that can promptly support the voltage of the point of common coupling (PCC) of a WPP during the grid fault. In the proposed scheme, the WPP and DFIG controllers operate in a voltage control mode. The DFIG controller employs two control loops: a maximum voltage dip-dependent reactive current injection loop and a reactive power to voltage loop. The former injects the reactive power in proportion to the maximum voltage dip; the latter injects the reactive power in proportion to the available reactive power capability of a DFIG. The former improves the performance of the conventional voltage control scheme, which uses the latter only, by increasing the reactive power as a function of the maximum voltage dip. The performance of the proposed scheme was investigated for a 100-MW WPP consisting of 20 units of a 5-MW DFIG under various grid fault scenarios using an EMTP-RV simulator. The simulation results indicate that the proposed scheme promptly supports the PCC voltage during the fault under various fault conditions by increasing the reactive current with the maximum voltage dip.

이중여자 유도형 풍력발전기 기반 풍력단지의 계통 연계점 전압제어 (Voltage Control for a Wind Power Plant Based on the Available Reactive Current of a DFIG and Its Impacts on the Point of Interconnection)

  • ;김진호;;강용철
    • 전기학회논문지
    • /
    • 제65권1호
    • /
    • pp.23-30
    • /
    • 2016
  • Wake effects cause wind turbine generators (WTGs) within a wind power plant (WPP) to produce different levels of active power and subsequent reactive power capabilities. Further, the impedance between a WTG and the point of interconnection (POI)-which depends on the distance between them-impacts the WPP's reactive power injection capability at the POI. This paper proposes a voltage control scheme for a WPP based on the available reactive current of the doubly-fed induction generators (DFIGs) and its impacts on the POI to improve the reactive power injection capability of the WPP. In this paper, a design strategy for modifying the gain of DFIG controller is suggested and the comprehensive properties of these control gains are investigated. In the proposed scheme, the WPP controller, which operates in a voltage control mode, sends the command signal to the DFIGs based on the voltage difference at the POI. The DFIG controllers, which operate in a voltage control mode, employ a proportional controller with a limiter. The gain of the proportional controller is adjusted depending on the available reactive current of the DFIG and the series impedance between the DFIG and the POI. The performance of the proposed scheme is validated for various disturbances such as a reactive load connection and grid fault using an EMTP-RV simulator. Simulation results demonstrate that the proposed scheme promptly recovers the POI voltage by injecting more reactive power after a disturbance than the conventional scheme.

계통연계 분산전원의 새로운 단독운전 판별기법 (Novel Islanding Detection Method for Distributed Generation Interconnected with Utility Grid)

  • 배병열;이두영;고종선;최남섭;한병문
    • 전기학회논문지
    • /
    • 제57권1호
    • /
    • pp.65-72
    • /
    • 2008
  • This paper describes the development of a novel islanding detection method, which uses the signal cross-corelation scheme between the injected reactive current and the power frequency deviation. The existing method, which injects the reactive current of 2.5-5% to the rated current and detects the frequency deviation directly, brings about lowing the power quality due to the harmonic pollution. The proposed method eliminates the weak point of the existing method, because it injects the reactive current less than 1% to the rated current. The operational feasibility was verified through computer simulations with PSCAD/EMTDC software, and experimental works with a 10kVA hardware prototype. The proposed method can detect the islanding status effectively without lowing the power quality of interconnected distributed generation system.

송전 전력 제어를 위한 분산 정지형 직렬 보상기의 무효전력 주입 기법 (Algorithm of reactive power injection on Distributed Static Series Compensator)

  • 윤한종;이태영;조영훈
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2017년도 전력전자학술대회
    • /
    • pp.214-215
    • /
    • 2017
  • Distributed Flexible AC Transmission System(D-FACTS) was proposed as a solution for weakness of FACTS device s. The D-FACTS device DSSC(Distributed Static Series Co mpensator) can provide controllable reactance compensation in transmission line such as SSSC(Static Synchronous Series Compensator). This paper introduce the algorithm of reactive power injection on DSSC and propose the method of current balancing by reactive power injection. The proposed algorithm has been verified with simulation and experiment results.

  • PDF

Islanding Detection Method for Inverter-based Distributed Generation Systems using a Signal Cross-correlation Scheme

  • Bae, Byung-Yeol;Jeong, Jong-Kyou;Lee, Ji-Heon;Han, Byung-Moon
    • Journal of Power Electronics
    • /
    • 제10권6호
    • /
    • pp.762-768
    • /
    • 2010
  • This paper describes the development of a new islanding detection method for inverter-based distributed generation systems, which uses a signal cross-correlation scheme between the injected reactive current and the power frequency deviation. The proposed method injects 1% of the reactive current to the rated current which brings about a negligible degradation of the power quality. It discriminates the islanding state, when the calculated cross-correlation index is larger than 0.5. The operational feasibility was verified through computer simulations with PSCAD/EMTDC software and experimental research with a hardware prototype. The proposed method can detect the islanding state without degrading the power quality at the point of common connection. Further study is required to overcome the cancellation of the injected reactive current from multiple distributed generation units interconnected with the utility grid.

계통 연계형 가변속 풍력발전기의 무효전력 주입을 통한 PCC 전압 변동량 실시간 보상 (Realtime Compensation of PCC Voltage Variation by Injection of Required Reactive Power in a Grid Connected Variable Speed Wind Turbine)

  • 임지훈;송승호
    • 전력전자학회논문지
    • /
    • 제15권1호
    • /
    • pp.69-74
    • /
    • 2010
  • 풍력발전기가 계통에 연계되어 운전 중 바람의 변동에 따라 유효전력이 변동하면 연계지점에서는 전압변동이 발생하며 풍력발전기의 연계 위치 (PCC, Point of Common Coupling) 에 따라 그 값은 변동한다. 본 논문에서는 이러한 계통 연계 지점의 전압변동이 이상 전원에서 PCC지점까지의 등가 선로 임피던스와 풍력발전기 출력 전류의 곱에 비례함을 보였으며 이러한 전압변동을 억제하기 위하여 필요한 무효전력 요구량을 해석적인 방법으로 구하였다. 만일 풍력발전기 출력단 인버터의 용량 제한에 의해 무효전력 주입량에 한계가 있거나 전압변동 허용범위가 주어진 경우에는 그에 따라 무효전력 주입량을 변화시킬 수 있다. 제안된 알고리즘을 가변속 풍력발전시스템의 출력단 인버터에 사용하면 수시로 변동하는 유효전력에 따라 무효전력 요구량을 실시간으로 계산함으로서 PCC전압변동을 최소화할 수 있다. 제안된 알고리즘의 타당성을 검증하기 위해 실제 서해 도서지역에 설치된 소형 풍력발전기 및 전력 시스템 파라메터를 사용하여 Matlab과 PSCAD/EMTDC 시뮬레이션을 수행하였다.

A New Control Scheme for Unified Power Quality Compensator-Q with Minimum Power Injection

  • Lee, Woo-Cheol
    • Journal of Power Electronics
    • /
    • 제7권1호
    • /
    • pp.72-80
    • /
    • 2007
  • Voltage sags are one of the most frequently occurring power quality problems challenging power systems today. The Unified Power Quality Conditioner (UPQC) is one of the major custom power solutions that are capable of mitigating the effect of supply voltage sags at the load or Point of Common Coupling (PCC). A UPQC-Q employs a control method in which the series compensator injects a voltage that leads the supply current by $90^{\circ}C$ so that the series compensator at steady state consumes no active power. However, the UPQC-Q has the disadvantage that its series compensator needs to be overrated. Thus it cannot offer effective compensation. This paper proposes a new control scheme for the UPQC-Q that offers minimum power injection. The proposed minimum power injection method takes into consideration the limits on the rated voltage capacity of the series compensator and its control scheme. The validity of the proposed control scheme is investigated through simulation and experimental results.

3상 계통 연계형 인버터의 역상분 전류 주입을 이용한 계통 등가 임피던스 추정 기법 (Equivalent Grid Impedance Estimation Method Using Negative Sequence Current Injection in Three-Phase Grid-connected Inverter)

  • 박찬솔;송승호;임지훈
    • 전력전자학회논문지
    • /
    • 제20권6호
    • /
    • pp.526-533
    • /
    • 2015
  • A new algorithm is proposed for the estimation of equivalent grid impedance at the point of common coupling of a grid-tie inverter output. The estimated impedance parameter can be used for the improvement of the performance and the stability of the distributed generation system. The estimation error is inevitable in the conventional estimation method because of the axis rotation due to PLL. In the conventional estimation error, the d-q voltage and current are used for the calculation of the impedance with active and reactive current injections. Conversely, in the proposed algorithm, the negative sequence current is injected, and then the negative sequence voltage is measured for the impedance estimation. As the positive and negative sequence current controller is independent and the PLL is based on the positive sequence component only, the estimation of the equivalent impedance can be achieved with high accuracy. Simulation and experimental results are compared to validate the proposed algorithm.

STATCOM에서 영상분 전류주입에 의한 셀간 전압평형화 제어의 향상 (Enhancement of Cell Voltage Balancing Control by Zero Sequence Current Injection in a Cascaded H-Bridge STATCOM)

  • 권병기;정승기;김태형
    • 전력전자학회논문지
    • /
    • 제20권4호
    • /
    • pp.321-329
    • /
    • 2015
  • The static synchronous compensator (STATCOM) of cascaded H-bridge configuration accompanying multiple separate DC sides is inherently subject to the problem of uneven DC voltages. These DC voltages in one leg can be controlled by adjusting the AC-side output voltage of each cell inverter, which is proportional to the active power. However, when the phase current is extremely small, large AC-side voltage is required to generate the active power to balance the cell voltages. In this study, an alternative zero-sequence current injection method is proposed, which facilitates effective cell balancing controllers at no load, and has no effect on the power grid because the injected zero sequence current only flows within the STATCOM delta circuit. The performance of the proposed method is verified through simulation and experiments.