• Title/Summary/Keyword: Reaction-sintering

Search Result 560, Processing Time 0.024 seconds

Oxygen Reduction Reaction of La1-xCaxCoO3 of Gas Diffusion Electrode in Alkaline Fuel Cell (알칼리형 연료전지용 La1-xCaxCoO3 기체확산전극의 산소환원반응)

  • Shim, Joong-Pyo;Park, Yong-Suk;Lee, Hong-Ki;Park, Soo-Gil;Lee, Ju-Seong
    • Applied Chemistry for Engineering
    • /
    • v.7 no.5
    • /
    • pp.992-998
    • /
    • 1996
  • The $La_{0.8}Ca_{0.2}CoO_3$ prepared by a citrate process was shown to have higher oxygen reduction current density and specific activity than $LaCoO_3$, $La_{0.6}Ca_{0.4}CoO_3$. In the cyclic voltammogram, an oxygen desorption peak of a $La_{0.8}Ca_{0.2}CoO_3$+carbon electrode was larger than that of a only carbon electrode. $La_{0.8}Ca_{0.2}CoO_3$ sintered at $900^{\circ}C$ for 5 hours was shown high oxygen reduction current density because of the particle size distribution and sintering effect.

  • PDF

Morphology-dependent Nanocatalysis: Rod-shaped Oxides

  • Shen, Wenjie
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.130-131
    • /
    • 2013
  • Nanostructured oxides are widely used in heterogeneous catalysis where their catalytic properties are closely associated with the size and morphology at nanometer level. The effect of particle size has been well decumented in the past two decades, but the shape of the nanoparticles has rarely been concerned. Here we illustrate that the redox and acidic-basic properties of oxides are largely dependent on their shapes by taking $Co_3O_4$, $Fe_2O_3$, $CeO_2$ and $La_2O_3$ nanorods as typical examples. The catalytic activities of these rod-shaped oxides are mainly governed by the nature of the exposed crystal planes. For instance, the predominant presence of {110} planes which are rich in active $Co^{3+}$ on $Co_3O_4$ nanorods led to a much higher activity for CO oxidation than the nanoparticles that mainly exposed the {111} planes. The simultaneous exposure of iron and oxygen ions on the surface of $Fe_2O_3$ nanorods have significantly enhanced the adsorption and activation of NO and thereby promoted the efficiency of DeNOx process. Moreover, the exposed surface planes of these rod-shaped oxides mediated the reaction performance of the integrated metal-oxide catalysts. Au/$CeO_2$ catalysts exhibited outstanding stability under water-gas shift conditions owing to the strong bonding of gold particle on the $CeO_2$ nanorods where the formed gold-ceria interface was resistant towards sintering. Cu nanoparticles dispersed on $La_2O_3$ nanorods efficiently catalyzed transfer dehydrogenation of primary aliphatic alcohols based on the uniue role of the exposed {110} planes on the support. Morphology control at nanometer level allows preferential exposure of the catalytically active sites, providing a new stragegy for the design of highly efficient nanostructured catalysts.

  • PDF

Fabrication of Porous Mo by Freeze-Drying and Hydrogen Reduction of MoO3/Camphene Slurry (MoO3/camphene 슬러리의 동결건조 및 수소환원에 의한 Mo 다공체 제조)

  • Lee, Wonsuk;Oh, Sung-Tag
    • Journal of Powder Materials
    • /
    • v.19 no.6
    • /
    • pp.446-450
    • /
    • 2012
  • In order to fabricate the porous Mo with controlled pore characteristics, unique processing by using $MoO_3$ powder as the source and camphene as the sublimable material is introduced. Camphene-based 15 vol% $MoO_3$ slurries, prepared by milling at $50^{\circ}C$ with a small amount of dispersant, were frozen at $-25^{\circ}C$. Pores were generated subsequently by sublimation of the camphene during drying in air for 48 h. The green body was hydrogen-reduced at $750^{\circ}C$, and sintered at $1000-1100^{\circ}C$ for 1 h. After heat treatment in hydrogen atmosphere, $MoO_3$ powders were completely converted to metallic W without any reaction phases. The sintered samples showed large pores with the size of about $150{\mu}m$ which were aligned parallel to the camphene growth direction. Also, the internal wall of large pores and near bottom part of specimen had relatively small pores due to the difference in the camphene growth rate during freezing process. The size of small pores was decreased with increase in sintering temperature, while that of large pores was unchanged. The results are strongly suggested that the porous metal with required pore characteristics can be successfully fabricated by freeze-drying process using metal oxide powders.

Catalytic Oxidation of Toluene over Pd-Activated Alumina Catalysts at Low Temperature (활성알루미나에 담지한 팔라듐 촉매상에서 톨루엔의 저온 연소반응)

  • Lee, Ju-Yeol;Song, Hyung-Jin;Lee, Sang-Bong;Kim, Mi-Hyung;Jo, Young-Min
    • Journal of the Korean Applied Science and Technology
    • /
    • v.29 no.2
    • /
    • pp.339-347
    • /
    • 2012
  • This study focuses on developing catalysts for the removal of toluene produced from paint booth. Toluene is one of the major VOC in painting, coating process. Pd catalysts have been used in hydrogenation oxidation and low temperature combustion reaction for toluene removal. Pd catalysts, even though it is very precious and expensive. Therefore, the prepared catalysts from minimizing the amount of Pd ratio (0.1~1.0wt%) were measured. As a result, 1.0wt% Pd(R) catalyst under all conditions showed the highest activity. These results may suggest that the catalytic activity is related to Pd dispersion according sintering atmosphere and Pd ratio in the manufacturing process through the analysis of SEM, XRD.

Dielectrical and Pyroelectrical Properties of $Pb(Zn_{1/3}Nb_{2/3})O_3-Pb(Zr_xTi_{1-x})O_3$ Compound Ceramics ($Pb(Zn_{1/3}Nb_{2/3})O_3-Pb(Zr_xTi_{1-x})O_3$세라믹의 유전 및 초전 특성)

  • 이성갑;조현무
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.14 no.10
    • /
    • pp.796-801
    • /
    • 2001
  • Ferroelectric 0.05PZN-xPZT(90/10)-(0.95-x)PZT(10/90) (x=0.65, 0.85) specimens were fabricated by the solid-state reaction method, and especially PZT(90/10) and PZT(10/90) powders were derived by the sol-gel method. All specimens showed a uniform ferroelectric grain without the presence of the pyrocholre phase. Average grain size increased with an increased in sintering temperature, the values for the x=0.65 and x=0.85 specimens sintered at 125$0^{\circ}C$ were 14.4$\mu$m and 9.8$\mu$m, respectively. The dielectric constant and dielectric loss of the x=0.65 specimen sintered at 125$0^{\circ}C$ were 1247. 2.06%, respectively. The coercive field and the remanent polarization of x=0.65 and x=0.85 specimens sintered at 125$0^{\circ}C$ were 8.5kV/cm, 13$\mu$C/$\textrm{cm}^2$ and 17.2kV/cm, 28 $\mu$C/$\textrm{cm}^2$, respectively. The pyroelectric coefficient of the x=0.65 and x=0.85 specimens sintered at 125$0^{\circ}C$ were 5.64$\times$10$^{-8}$ C/$\textrm{cm}^2$K and 2.76$\times$10$^{-8}$ C/$\textrm{cm}^2$K, respectively.

  • PDF

Effect of Porosity on the Fracture Toughness and Electrical Conductivity of Pressureless Sintered ${\beta}-SiC-ZrB_2$ Composites (무가압소결(無加壓燒結)한 ${\beta}-SiC-ZrB_2$ 복합체(複合體)의 파괴인성(破壞忍性)과 전기전도성(電氣傳導性)에 미치는 기공(氣孔)의 영향)

  • Shin, Yong-Deok;Kwon, Ju-Sung
    • Proceedings of the KIEE Conference
    • /
    • 1998.11c
    • /
    • pp.847-849
    • /
    • 1998
  • The effect of $Al_{2}O_{3}$ additives on the microstructure, mechanical and electrical properties of ${\beta}$-SiC+39vol.%$ZrB_2$ electroconductive ceramic composites by pressureless sintering were investigated. The ${\beta}$-SiC+39vol.%$ZrB_2$ ceramic composites were pressureless sintered by adding 4, 8, 12wt.% $Al_{2}O_{3}$ powder as a liquid forming additives at $1950^{\circ}C$ for 1h. Phase analysis of composites by XRD revealed mostly of $\alpha$-SiC(6H), $ZrB_2$ and weakly $\alpha$-SiC(4H), $\beta$-SiC(15R) phase. The relative density of composites was lowered by gaseous products of the result of reaction between $\beta$-SiC and $Al_{2}O_{3}$ therefore, porosity was increased with increased $Al_{2}O_{3}$ contents. The fracture toughness of composites was decreased with increased $Al_{2}O_{3}$ contents, and showed the maximum value of $1.4197MPa{\cdot}m^{1/2}$ for composite added with 4wt.% $Al_{2}O_{3}$ additives. The electrical resistivity of ${\beta}$-SiC+39vol.%$ZrB_2$ electroconductive ceramic composite was increased with increased $Al_{2}O_{3}$ contents, and showed positive temperature coefficient resistance (PTCR) in the temperature from $25^{\circ}C$ to $700^{\circ}C$.

  • PDF

Preparation and Low-Voltage Luminescent Properties of $SrTiO_3$:Al, Pr Red Phosphor (저전압용 $SrTiO_3$ : Al, Pr 적색 형광체 합성 및 발광특성)

  • Park, Jeong-Gyu;Ryu, Ho-Jin;Park, Hui-Dong;Choi, Seung-Cheol
    • Korean Journal of Materials Research
    • /
    • v.8 no.7
    • /
    • pp.601-606
    • /
    • 1998
  • The $SrTi0_3$:Al, Pr red phosphors were prepared by solid state reaction method. Phosphor preparation parameters such as sintering temperature and time were optimized for the photoluminescence(PU intensity and the cathodoluminescence(CL) intensity. Powder samples showed the characteristic X-ray diffraction patterns of the perovskite structure and the average particle size of 3~5/$\mu\textrm{m}$ for particle size distribution(PSD) analysis. Also, scanning electron microscopy for the powder samples showed that the particles are reasonably crystallized with spherical shape. Especially, higher low voltage CL properties of $SrTi0_3$:Al, Pr phosphors than commercial $Y_2O_3$:Eu phosphors are expected to be applied for a low voltage field emission display(FED).

  • PDF

A Deep Investigation of the Thermal Decomposition Process of Supported Silver Catalysts

  • Jiang, Jun;Xu, Tianhao;Li, Yaping;Lei, Xiaodong;Zhang, Hui;Evans, D.G.;Sun, Xiaoming;Duan, Xue
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.6
    • /
    • pp.1832-1836
    • /
    • 2014
  • A deep understanding of the metallic silver catalysts formation process on oxide support and the formation mechanism is of great scientific and practical meaning for exploring better catalyst preparing procedures. Herein the thermal decomposition process of supported silver catalyst with silver oxalate as the silver precursor in the presence of ethylenediamine and ethanolamine is carefully investigated by employing a variety of characterization techniques including thermal analysis, in situ diffuse reflectance infrared Fourier transform spectroscopy, scanning electron microscopy, and X-ray diffraction. The formation mechanism of supported silver particles was revealed. Results showed that formation of metallic silver begins at about $100^{\circ}C$ and activation process is essentially complete below $145^{\circ}C$. Formation of silver was accompanied by decomposition of oxalate group and removal of organic amines. Catalytic performance tests using the epoxidation of ethylene as a probe reaction showed that rapid activation (for 5 minutes) at a relatively low temperature ($170^{\circ}C$) afforded materials with optimum catalytic performance, since higher activation temperatures and/or longer activation times resulted in sintering of the silver particles.

Reaction Sintering and Thermal Conductivity of AIN Ceramics with $\textrm{Al}_2\textrm{O}_3$ Additions ($\textrm{Al}_2\textrm{O}_3$를 함유하는 AIN세라믹스의 반응소결 및 열전도도)

  • Kim, Yeong-U;Lee, Yun-Bok;Park, Sang-Hui;O, Gi-Dong;Park, Hong-Chae
    • Korean Journal of Materials Research
    • /
    • v.8 no.1
    • /
    • pp.58-63
    • /
    • 1998
  • 5-64.3mol% AI$_{2}$O$_{3}$를 함유하는 AIN(1wt% $Y_{2}$O$_{3}$)의 1650-190$0^{\circ}C$ 상압소결에 따른 치밀화 거동, 미세구조, 열전도도가 검토 되었다. XRD 분석결과, AION(5NIN \ulcorner9 AI$_{2}$O$_{3}$ ), 27R AIN다형, AIN이 소결체의 주상으로서 동정되었다. AI$_{2}$O$_{3}$ 의 함량이 증가할수록 소결체의 부피밀도는 증가 하였다. AION을 기지상으로 하는 물질($\geq$ 30mol% AI$_{2}$O$_{3}$ )인 경우는 175$0^{\circ}C$ 소결에서 최대의 부피밀도를 나타내었으며, AIN을 기지상으로 하는 경우(5mol% AI$_{2}$O$_{3}$ ) 는 소결온도가 증가할수록 밀도가 감소하였다. $Y_{2}$O$_{3}$의 존재하에서 주로 185$0^{\circ}C$이상에서 AI$_{2}$O$_{3}$ 와 AIN의 반응에 으해서 액상이 생성되었다. AION을 기지로 하는 물질의 치밀화는 주로 액상의생성 및 AION의 입성장에 의해서 지배되었으나, AIN을 기지로 하는 물질에 있어서는 1$650^{\circ}C$에서 액상이 생성되었고, 소결온도가 190$0^{\circ}C$까지 상승할 동안 AIN의 입성장은 크게 일어나지 않았다. AI$_{2}$O$_{3}$ 함량이 증가할수록 낮은 열도도를 갖는 다량의 AION 및 액상의 생성으로 인하여 소결체의열전도도는 감소 하였다. 5mol% AI$_{2}$O$_{3}$ 를 함유한 190$0^{\circ}C$ 소결체가 최대의 열전도도(77.9W/(m\ulcornerk))를 나타내었다.

  • PDF

Reactivity Test of Ni-based Catalysts Prepared by Various Preparation Methods for Production of Synthetic Nature Gas (합성천연가스 생산을 위한 고효율 Ni계 촉매의 제법에 따른 촉매의 반응특성 조사)

  • Jang, Seon-Ki;Park, No-Kuk;Lee, Tae-Jin;Koh, Dong-Jun;Lim, Hyo-Jun;Byun, Chang-Dae
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.22 no.2
    • /
    • pp.249-256
    • /
    • 2011
  • In this study, the Ni-based catalysts for the production of synthetic natural gas were prepared by various preparation methods such as the co-precipitation, precipitation, impregnation and physical mixing methods. The ranges of the reaction conditions were the temperatures of 250~$350^{\circ}C$, $H_2$/CO mole ratio of 3.0, the pressures of 1 atm and the space velocity of 20000 $ml/g_{-cat{\cdot}}{\cdot}h$. It was found that the catalyst prepared by precipitation method had higher CO conversion than the catalyst prepared by co-precipitation method. While the catalyst prepared by precipitation method had the formation of NiO structure, the catalyst prepared by co-precipitation method had the formation of $NiAl_2O_4$ structure. It was confirmed that Ni-based catalyst prepared by the physical mixing method had the lowest CO conversion because it was deactivated by the production of $Ni_3C$ during the methanation. As a result, it was shown clearly that Ni-based catalysts prepared by impregnation method expressed the highest catalytic activity in CO methanation.