• Title/Summary/Keyword: Reaction to Stress

Search Result 753, Processing Time 0.023 seconds

Effects of Differentiated Temperature Based on Growing Season Temperature on Growth and Physiological Response in Chinese Cabbage 'Chunkwang' (고랭지 여름배추 주산지의 기온을 기준으로 한 수준별 온도가 배추 '춘광'의 생육 및 생리반응에 미치는 영향)

  • Son, In-Chang;Moon, Kyung Hwan;Song, Eun Young;Oh, Soonja;Seo, Hyeongho;Moon, Young Eel;Yang, Jinyoung
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.17 no.3
    • /
    • pp.254-260
    • /
    • 2015
  • Changes of the growth, quality and physiological response of Chinese cabbage cv 'Chunkwang' in response to five different temperature treatments based on climate change scenario were investigated during the growing season. The treatments consisted of normal year temperature $-2.0^{\circ}C$ (I), normal year temperature (II; Control group), normal year temperature $+2.0^{\circ}C$ (III), normal year temperature $+4.0^{\circ}C$ (IV), and normal year temperature $+6.0^{\circ}C$ (V). Regarding fresh weight, number of leaves, and leaf area were high in group IV, and V before the head formation stage, but it has decreased during the later growth period. Rate of frangibleness sympton was the highest in group V as 85.7%, and it was decreased in group IV (64.3%), group III (28.6%), group II (14.3%), and group I (7.1%). Regarding photosynthetic rate, group III, IV, and V showed relatively high photosynthetic rate at 20 DAP but it was reduced dramatically during the later growth period. Transpiration and stomatal conductance showed the similar trend with the photosynthetic rate. When comparing the chlorophyll fluorescence reaction of each treatment group at 50 DAP, Fv/Fm in group I was highest as 8.04 among all treatment groups and the lowest in group IV as 7.15.

Study of BiJeung by 18 doctors - Study of II - (18인(人)의 비증(痺證) 논술(論述)에 대(對)한 연구(硏究) - 《비증전집(痺證專輯)》 에 대(對)한 연구(硏究) II -)

  • Sohn, Dong Woo;Oh, Min Suk
    • Journal of Haehwa Medicine
    • /
    • v.9 no.1
    • /
    • pp.595-646
    • /
    • 2000
  • I. Introduction Bi(痺) means blocking. BiJeung is one kind of symptoms making muscles, bones and jonts feel pain, numbness or edema. For example it can be gout or SLE etc. says that Bi is combination of PungHanSeup. And many doctors said that BiJeung is caused by food, fatigue, sex, stress and change of weather. Therefore we must treat BiJeung by character of patients and characteristic of the disease. Many famous doctors studied medical science by their fathers or teachers. So the history of medical science is long. So I studied ${\ll}Bijeungjujip{\gg}$. II. Final Decision 1. JoGeumTak(趙金鐸) devided BiJeung into Pung, Han, Seup and EumHeo, HeulHeo, YangHeo, GanSinHeo by charcter or reaction of pain. And he use DaeJinGyoTang, GyegiGakYakJiMoTang, SamyoSan, etc. 2. JangPaeGyeu(張沛圭) focused on division of HanYeol(寒熱; coldness and heat) in spite of complexity of BiJeung. He also used insects for treatment. They are very useful for treatment of BiJeung because they can remove EoHyeol(瘀血). 3. SeolMaeng(薛盟) said that the actual cause of BiJeung is Seup. So he thought that BiJeung can be divided into PungSeup, SeupYeol, HanSeup. And he established 6 rules to treat BiJeung and he studied herbs. 4. JangGi(張琪) introduced 10 prescriptions and 10 rules to cure BiJeung. The 1st prescription is for OyeSa, 2nd for internal Yeol, 3rd for old BiJeung, 4th for Soothing muscles, 5th for HanSeup, 6th for regular BiJeung, 7th for functional disorder, 8th for YeolBi, 9th for joint pain and 10th for pain of lower limb. 5. GangSeYoung(江世英) used PungYeongTang(風靈湯) for the treatment of PungBi, OGyeHeukHoTang(烏桂黑虎湯) for HanBi, BangGiMokGwaTang(防己木瓜湯) for SeupBi, YeolBiTang(熱痺湯) for YeolBi, WoDaeRyeokTang(牛大力湯) for GiHei, HyeolPungGeunTang(血楓根湯) for HyeolHeo, ToJiRyongTang(土地龍湯) for the acute stage of SeupBi, OJoRyongTang(五爪龍湯) for the chronic stage of SeupBi, and so on. 6. ShiGeumMook(施今墨) devided BiJeung into four types. They are PungSeupYeol, PungHanSeup, GiHyeolSil(氣血實) and GiHyeolHeo(氣血虛). And he introduced the eight rules of the treatment(SanPun(散風), ChukHan(逐寒), GeoSeuP(, CheongYeol(淸熱), TongRak(通絡), HwalHyeol(活血), HaengGi(行氣), BoHeo(補虛)). 7. WangYiYou(王李儒) explained the acute athritis and said that it can be applicable to HaneBi(行痺). And he used GyeJiJakYakJiMoTang(桂枝芍蘂知母湯) for HanBi and YeolBiJinTongTang(熱痺鎭痛湯) for YeolBi. 8. JangJinYeo(章眞如) said that YeolBi is more common than HanBi. The sympthoms of YeolBi are severe pain, fever, dried tongue, insomnia, etc. And he devided YeolBi into SilYeol and HeoYeol. In case of SilYeol, he used GyeoJiTangHapBaekHoTang(桂枝湯合白虎湯) and in case of HeoYeol he used JaEumYangAekTang(滋陰養液湯). 9. SaHaeJu(謝海洲) introduced three important rules of treatment and four appropriate rules of treatment of BiJeung. 10. YouDoJu(劉渡舟) said that YeolBi is more common than HanBi. He used GaGamMokBanGiTang(加減木防已湯) for YeolBi, GyeJiJakYakJiMoTang or GyeJiBuJaTang(桂枝附子湯) for HanBi and WooHwangHwan(牛黃丸) for the joint pain. 11. GangYiSon(江爾遜) focused on the internal cause. The most important internal cause is JeongGiHeo(正氣虛). So he tried to treat BiJeung by means of balance of Gi and Hyeol. So he ususlly used ODuTang(烏頭湯) and SamHwangTang(三黃湯) for YeolBi, OJeokSan(五積散) for HanBi, SamBiTang(三痺湯) for the chronic BiJeung. 12. HoGeonHwa(胡建華) said that to distinguish YeolBi from Hanbi is very difficult. So he used GyeJiJakYakJiMoTang in case of mixture of HanBi and YeoBi. 13. PiBokGo(畢福高) said that the most common BiJeung is HanBi. He usually used acupuncture with medicine. He followed the theory of EumYongHwa(嚴用和)-he focused on SeonBoHuSa(先補後瀉). 14. ChoiMunBin(崔文彬) used GeoPungHwalHyeolTang(祛風活血湯) for HanBi, SanHanTongRakTang(散寒通絡湯) for TongBi(痛痺), LiSeupHwaRakTang(利濕和絡湯) for ChakBi(着痺), CheongYeolTongGyeolChukBiTang(淸熱通經逐痺湯) for YeolBi(熱痺) and GeoPungHwalHyeolTang(祛風活血湯) for PiBi(皮痺). 15. YouleokSeon(劉赤選) introduced the common principle for the treatment of BiJeung. He used HaePuneDeungTang(海風藤湯) for HaengBi(行痺), SinChakTang(腎着湯), DokHwalGiSaengTang(獨活寄生湯) for TongBi(痛痺), TongPungBang(痛風方) for ChakBi(着痺) and SangGiYiMiTangGaYeongYangGakTang(桑枝苡米湯加羚羊角骨) for YeolBi(熱痺). 16. LimHakHwa(林鶴和) said about TanTan(movement disorders or numbness) and devided TanTan into the acute stage and the chronic stage. He used acupuncture at the meridian spot like YeolGyeol(列缺), HapGok(合谷), etc. And he also used MaHwangBuJaSeSinTang(麻黃附子細辛湯) in case of the acute stage. In the chronic stage he used BangPungTang(防風湯). 17. JinBaekGeun(陳伯勤) liked to use three rules(HwaHyeol(活血), ChiDam(治痰), BoSin(補腎)) to treat BiJeung. He used JinTongSan(鎭痛散) for the purpose of HwalHyeol(活血), SoHwalRakDan(小活絡丹) for ChiDam(治痰) and DokHwalGiSaengTang(獨活寄生湯) for BoSin(補腎). 18. YimGyeHak(任繼學) focused on YangHyeolJoGi(養血調氣) if the stage of BiJeung is chronic. And in the chronic stage he insisted on not using GalHwal(羌活), DokHwal(獨活) and BangPung(防風).

  • PDF

Effect of Ginseng on Visceral Nucleic Acid Content of Rats (고려인삼이 흰쥐의 장기조직 핵산 함유량에 미치는 영향)

  • Kim, Chul;Choi, Hyun;Kim, Chung-Chin;Kim, Jong-Kyu;Kim, Myung-Suk;Huh, Man-Kyung
    • The Korean Journal of Physiology
    • /
    • v.5 no.1
    • /
    • pp.23-42
    • /
    • 1971
  • I. Chemical analysis A study was planned to see if administration of ginseng extract has any influence upon the adrenal, the hepatic, the splenic, and the pancreatic nucleic acid contents of rats, and to estimate the effect of ACTH administration as a substitute for stress reaction upon these nucleic acid contents of rats previously primed with ginseng. Ninety male rats$(body\;weight:\;150{\sim}200gm)$ were divided into the ginseng, the saline, and the normal control groups, which received for 5 days 0.5ml/100 gm body weight of ginseng extract solution (4 mg of ginseng alcohol extract in 1 ml of saline), same amount of saline, or no medication, respectively. On the 5th experimental day, each of the 3 groups was further divided into 2 subgroups yielding the ginseng, the ginseng-ACTIT, the saline, the saline-ACTH, the normal control, and the normal-ACTH subgroups. The ginseng, the saline, and the normal control subgroups were sacrificed 3 hours after the last medication, while the ginseng-ACTH, the saline·ACTH, and the normal-ACTH subgroups received ACTH(0.1 unit/subject) 1 hour after the last medication and were sacrificed after 1 more hour. The adrenal gland, the liver, the spleen and the pancreas of each rat were measured for RNA and DNA contents using the chemical method of Schmidt-Thannhauser-Schneider. Following results were obtained: 1. Adrenal RNA and DNA contents and RNA/DNA ratio were all significantly higher in the ginseng group compared with the values obtained from the normal control and the saline groups. Generally administration of ACTH reduced nucleic acid contents of the viscera examined. However, in the ginseng group the rate of decrease [(value of ginseng-ACTH subgroup-value of ginseng subgroup) x100/value of ginseng subgroup)] in adrenal RNA and DNA contents and in RNA/DNA ratio were more conspicuous than they were in the normal control and the saline groups. 2. Hepatic RNA and DNA contents and RNA/DNA ratio were all significantly less in the ginseng group than in the normal control and the saline groups. After ACTH, the rate of decrease in hepatic RNA, DNA, and RNA/DNA ratio of the ginseng· group was less conspicuous than those of the other 2 groups. 3. With regard to the splenic nucleic acid contents, the RNA and the RNA/DNA values of the ginseng group were higher than those of the normal control group but lower than those of the saline group, while the DNA value of the ginseng group was lower than that of the normal control group but higher than that of the saline group. Following administration of ACTH, the rate of decrease in RNA and DNA contents and in RNA/DNA ratio of the ginseng group was more conspicuous than that of the normal control group but less remarkable than that of the saline group. 4. Pancreatic RNA and DNA contents were notably lower in the ginseng group than in the normal control and the saline groups. However, the RNA/DNA ratio of the ginseng group was higher than that of the normal control and the saline groups.'After ACTH, the rate of decrease in pancreatic RNA and RNA/DNA ratio of the ginseng group was less than that of the normal. control group but more than that of the saline group, while the DNA content was actually increased in the ginseng group though it decreased in the normal control and the saline groups. Although the results are not clear enough for an accurate interpretation, they seem to indicate that ginseng exerts notable influence upon the RNA and DNA contents and the RNA/DNA ratio of the viscera stodied. On the whole the drug tends to increase the RNA and DNA contents and RNA/DNA ratio of the adrenal gland but seems to diminish the values of the other 3 viscera. In the early period following ACTH, ginseng facilitates the fall in RNA and DNA contents and RNA/DNA ratio of the adrenal gland, while it tends to reduce the fall in the values of the other viscera studied. II. Autoradiographic and histochemical analysis It was planned autoradiographically and histochemically to affirm and extend the results obtained in part I with regard to the chemically assessed change in the adrenal, the pancreatic, the hepatic and the splenic DNA and RNA contents under the influence of ginseng and ACTH. Fourty male mice (body weight: $18{\sim}20gm$) and 20 male rats were used. Each animal species was divided into the saline, the ginseng, the saline-ACTH, and the ginseng-ACTH groups according to the administered drugs. In the mice, the adrenal, the pancreatic, the splenic and the hepatic DNA-synthetic activity was assessed autoradiographically after administration of $^3H$-thymidine. In the rats, the RNA content of the above 4 organs was assessed histochemically after staining them with methylgreen pyronine. Following results were obtained: 1. Labeled cells were significantly more numerous in the adrenal cortex, the spleen and the liver of the ginseng group than in those of the saline group, although they were less numerous in the pancreas of the ginseng group than in the pancreas of the saline group. The adrenocortical, the pancreatic, the splenic and the hepatic tissues were stained with methylgreen pyronine more deeply in the ginseng group than in the saline group. 2. The adrenocortical, the pancreatic, the splenic and the hepatic tissues contained labeled cells less numerously in the saline-ACTH and the ginseng-ACTH group than in the saline and the ginseng groups. All these tissues were also stained with methylgreen pyronine less deeply in the saline-ACTH and the ginseng-ACTH groups than in the saline and the ginseng groups. 3. However, the adrenal cortex, the spleen, the pancreas, and the liver contained labeled cells more numerously in the ginseng-ACTH group than in the saline-ACTH group. the 4 tissues were stained with methylgreen pyronine more deeply in the ginseng-ACTH group than in the saline-ACTH group. It is inferred from the above results that though with exception, the ginseng mostly facilitates cellular synthesis of nucleic acids and mitigates reduction in nucleic acid content of tissues after administration of ACTH.

  • PDF