• Title/Summary/Keyword: Reaction temperature

Search Result 7,379, Processing Time 0.029 seconds

Water Gas Shift Reaction Research of the Synthesis Gas for a Hydrogen Yield Increase (수소 수율 증가를 위한 합성가스의 수성가스전환 반응 연구)

  • Kim, Min-Kyung;Kim, Jae-Ho;Kim, Woo-Hyun;Lee, See-Hoon
    • New & Renewable Energy
    • /
    • v.5 no.2
    • /
    • pp.9-14
    • /
    • 2009
  • Automobile Shredder Residue (ASR) is very appropriate in a gasification melting system. Gasification melting system, because of high reaction temperature over than $1,350^{\circ}C$, can reduce harmful materials. To use the gasification processes for hydrogen production, the high concentration of CO in syngas must be converted into hydrogen gas by using water gas shift reaction. In this study, the characteristics of shift reaction of the high temperature catalyst (KATALCO 71-5M) and the low temperature catalyst (KATALCO 83-3X) in the fixed - bed reactor has been determined by using simulation gas which is equal with the syngas composition of gasification melting process. The carbon monoxide composition has been decreased as the WGS reaction temperature has increased. And the occurrence quantity of the hydrogen and the carbon dioxide increased. When using the high temperature catalyst, the carbon monoxide conversion ratio ($1-CO_{out}/CO_{in}$) rose up to 95.8 from 55.6. Compared with average conversion ratio from the identical synthesis gas composition, the low temperature catalyst was better than the high temperature catalyst.

  • PDF

Recycling of Li2ZrO3 as LiCl and ZrO2 via a Chlorination Technique

  • Jeon, Min Ku;Kim, Sung-Wook;Lee, Keun-Young;Choi, Eun-Young
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.19 no.2
    • /
    • pp.271-278
    • /
    • 2021
  • In this study, a chlorination technique for recycling Li2ZrO3, a reaction product of ZrO2-assisted rinsing process, was investigated to minimize the generation of secondary radioactive pyroprocessing waste. It was found that the reaction temperature was a key parameter that determined the reaction rate and maximum conversion ratio. In the temperature range of 400-600℃, an increase in the reaction temperature resulted in a profound increase in the reaction rate. Hence, according to the experimental results, a reaction temperature of at least 450℃ was proposed to ensure a Li2ZrO3 conversion ratio that exceeded 80% within 8 h of the reaction time. The activation energy was found to be 102 ± 2 kJ·mol-1·K-1 between 450 and 500℃. The formation of LiCl and ZrO2 as reaction products was confirmed by X-ray diffraction analysis. The experimental results obtained at various total flow rates revealed that the overall reaction rate depends on the Cl2 mass transfer rate in the experimental condition. The results of this study prove that the chlorination technique provides a solution to minimize the amount of radioactive waste generated during the ZrO2-assisted rinsing process.

Browning Reaction of Fresh Ginseng (Panax ginseng C.A. Meyer) as Affected by Heating Temperature (가열온도에 따른 수삼의 갈변반응 특성)

  • 이종원;이성계
    • Journal of Ginseng Research
    • /
    • v.19 no.3
    • /
    • pp.249-253
    • /
    • 1995
  • In the browning reaction of Korean ginseng, it appears that enzymatic and non-enzymatic browning reaction occurred in the initial stage of heating fresh ginseng at low temperature, and then non-enzymatic browning reaction followed in the drying period after heating. Activation energy of the browning reaction for red ginseng was about 9.0 kcal/mol. Browning reaction of red ginseng was accede- rated with an increase in steaming time, and a great extent of browning reaction occurred between 60-90 min of steaming at 10$0^{\circ}C$. Browning pigments of red ginseng were mostly water soluble subset.

  • PDF

Aluminide Coatings on IN713C by Chemical Vapor Depostion (화화증착법에 의한 알루미나이드 코팅층의 형성)

  • Sohn, H.S.;Hong, S.H.;Kim, M.I.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.7 no.2
    • /
    • pp.129-138
    • /
    • 1994
  • The purpose of this study is to clarify the influence of the reaction temperature and $AlCl_3$ content on the aluminide coating formation on Ni-based superalloy IN713C in CVD process and to compare its throwing power with that of Pack Cementation process. Aluminide coating was formed by CVD in hot-wall stainless tube reactor from an $AlCl_3-H_2$ mixture in the temperature range $850{\sim}1050^{\circ}C$. At reaction temperature $850^{\circ}C$, the coating thickness and the content of aluminium at the surface were increased as $AlCl_3$ heating temperature was raised. At reaction temperature $1050^{\circ}C$, they were not influenced by the variation of $AlCl_3$ heating temperature. When $AlCl_3$ heating temperature was fixed $125^{\circ}C$, the phases of the coatings were varied from $Ni_2Al_3$ to Al-rich NiAl and to Ni-rich NiAl with the reaction temperature. Therefore, in this study the reaction temperature has been found to be a major factor in determining the phase formed in CVD process. The throwing power of CVD was superior to that of Pack Cementation.

  • PDF

A Study of Sweating Reaction by the Somato Types (체형별 발한 반응에 관한 연구)

  • Sim, Bu-Ja
    • Journal of the Ergonomics Society of Korea
    • /
    • v.17 no.2
    • /
    • pp.65-82
    • /
    • 1998
  • To investigate the difference of sweating reaction by the somato types, we measured total sweat rate, local sweat rate, skin temperature, physiological reaction and psychological reaction at $25{\pm}1^{\circ}C$ and $29{\pm}1^{\circ}C$ under laboratory conditons. Nine healthy adult females were divided into three somato types : slender (3), normal (3) and obese (3). The results were as follows ; Total sweat rate was highest in the obese type, followed by the normal and slender types in order. Local sweat rate was highest in the infrascapular area, and then came breast, the back of the hand, upper ann, anterior leg, and anterior thigh in all somato types. Mean skin temperature was highest in the slender type, and followed the normal and obese types. Rectal temperature, blood pressure and pulse rate were highest in the obese type. Psychological reaction appeared 'hot', 'humid', 'sweaty' as ambient temperature went up. Somato types made little difference in psychological reaction.

  • PDF

Mathematical Modeling of Self-propagating High Temperature Synthesis of Molybdenum- Tungstenb Disilicide (이규화 몰리브덴-텅스텐의 자전 고온 합성 반응 모델링)

  • Yeon, Sun-Hwa;Jang, Dae-Gyu;Lee, Cheol-Gyeong
    • Korean Journal of Materials Research
    • /
    • v.11 no.3
    • /
    • pp.164-170
    • /
    • 2001
  • The Self-propagating High-temperature Synthesis (SHS) for synthesizing ($Mo_{1-z}$ , $W_{z}$)$Si_2$was conducted experimentally with the mole fraction of Tungsten(W) from z=0.0 to z=0.5. The temperature profile was measured according to the reaction time through the thermocouple that was equipped into the center of these samples. When the reaction front is propagated around the thermocouple, the highest temperature appears and we regard this temperature as the adiabatic temperature. We found out by experimental results that the reaction velocity is in the range of 2.14~1.35mm/sec and the adiabatic temperature is in the range of 1883~1507K for the six samples. The reaction velocity and the adiabatic temperature were inclined to decrease with an increasing of the mole fraction of Tungsten (W). The SHS modeling is presented in order to predict the temperature profiles and these results are compared with the experimental results. It is predicted that in case of increasing the initial temperature of these six samples, the reaction temperature increased and that the sample of z=0.5 needs the preheating up to 800~900K in order to become reaction temperature 1900K.

  • PDF

Processing of NiTi Shape Memory Alloy by Self- propagating High-temperature Synthesis (자전 고온 반응 합성법을 이용한 NiTi계 형상기억 합금의 제조에 관한 연구)

  • 윤종필
    • Journal of Powder Materials
    • /
    • v.2 no.2
    • /
    • pp.158-164
    • /
    • 1995
  • Synthesis of the NiTi shape memory alloy using the thermal explosion mode of the self-propagating high-temperature synthesis has been investigated. The significant fractions of intermetallics phases were found to form at the Ti/Ni powder interface during the heating to the ignition temperature and seemed to influence the relative fraction of phases in the final products. As the heating rate to the ignition temperature was increased, the combustion temperature and the fraction of NiTi in the final reaction products were increased. The synthesis reaction under 70 MPa compressive pressure yielded a reaction product with 98% theoretical density.

  • PDF

Numerical Study on the Performance and the Heat Flux of a Coaxial Cylindrical Steam Reformer for Hydrogen Production (수소 생산을 위한 동축원통형 수증기 개질기의 성능 및 열유속에 대한 수치해석 연구)

  • Park, Joon-Guen;Lee, Shin-Ku;Bae, Joong-Myeon;Kim, Myoung-Jun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.9
    • /
    • pp.709-717
    • /
    • 2009
  • Heat transfer rate is a very important factor for the performance of a steam reformer because a steam reforming reaction is an endothermic reaction. Coaxial cylindrical reactor is the reactor design which can improve the heat transfer rate. Temperature, fuel conversion and heat flux in the coaxial cylindrical steam reformer are studied in this paper using numerical method under various operating conditions. Langmuir-Hinshelwood model and pseudo-homogeneous model are incorporated for the catalytic surface reaction. Dominant chemical reactions are assumed as a Steam Reforming (SR) reaction, a Water-Gas Shift (WGS) reaction, and a Direct Steam Reforming (DSR) reaction. Although coaxial cylindrical steam reformer uses 33% less amount of catalyst than cylindrical steam reformer, its fuel conversion is increased 10 % more and its temperature is also high as about 30 degree. There is no heat transfer limitation near the inlet area at coaxial-type reactor. However, pressure drop of the coaxial cylindrical reactor is 10 times higher than that of cylindrical reactor. Operating parameters of coaxial cylindrical steam reformer are the wall temperature, the inlet temperature, and the Gas Hourly Space Velocity (GHSV). When the wall temperature is high, the temperature and the fuel conversion are increased due to the high heat transfer rate. The fuel conversion rate is increased with the high inlet temperature. However, temperature drop clearly occurs near the inlet area since an endothermic reaction is active due to the high inlet temperature. When GHSV is increased, the fuel conversion is decreased because of the heat transfer limitation and short residence time.

A Study on Sewage Sludge Treatment by Vacuum Drying Method (감압건조법(減壓乾燥法)을 이용(利用)한 하수(下水)슬러지처리(處理))

  • Jang, Seong-Ho;Park, Jin-Sick;Kim, Soo-Saeng
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.6 no.1
    • /
    • pp.67-73
    • /
    • 1998
  • This study was to experiment, through sewage sludge treatment by Vacuum Drying Method, variation of water content with reaction pressure, reaction time, reaction temperature. The result are as follows; The water content decreased with the same reaction temperature and reaction time at lower pressure and 360~40 mmHg (a close vacuum) showed lower water content at low reaction temperature and short reaction time. The water content rapidly decreased with the same reaction pressure and time at low reaction temperature (above $120^{\circ}C$).

  • PDF

Effect of the Heating Temperature on the Alkali-activation Reaction of Calcined Kaolin Powder (열처리 카올린 분말의 알칼리활성화 반응에 미치는 가열온도의 영향)

  • Kim, Sung Gon;Song, Tae Woong
    • Journal of the Korean Ceramic Society
    • /
    • v.49 no.6
    • /
    • pp.601-607
    • /
    • 2012
  • The alkali-activation reaction of two types of typical kaolin calcined at various lower temperatures was investigated at room temperature and at elevated temperatures. For the assessment of the reactivity, the temperature increase and the setting time of pastes prepared with calcined kaolin and sodium/potassium hydroxide solution were measured. Unlike raw kaolin, calcined kaolin samples prepared at various temperature showed an alkali-activation reaction according to the different aspects of the changes in the mineral phases. The reactivity with alkaline solutions was exceedingly activated in the samples calcined at $600-650^{\circ}C$, but the reactivity gradually decreased as the temperature increased in a higher temperature range, most likely due to the changes in the crystal structure of the dehydrated kaolin. The activation effect of the calcination treatment was achieved at reaction temperatures that exceeded $60^{\circ}C$ and was enhanced as the temperature increased. The reactivity of the calcined kaolin with an alkaline solution was more enhanced with the solution of a higher concentration and with a solution prepared from sodium hydroxide rather than potassium hydroxide.