• Title/Summary/Keyword: Reaction rate model

Search Result 691, Processing Time 0.024 seconds

Interaction of Oxygen and Chlorine Dioxide in Pulp Bleaching (I) -Studies on the Degradation of Lignin Model Compounds- (펄프 표백시 산소와 이산화염소의 상호작용 (제1보) - 리그닌 모델화합물 연구 -)

  • 윤병호;황병호;김세종;최경화
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.35 no.3
    • /
    • pp.74-78
    • /
    • 2003
  • The structural property of phenolic and non-phenolic lignin has an effect on the reaction rate of lignin by oxygen and chlorine dioxide respectively. Moreover, the undesirable degradation of cellulose followed by lignin degradation is influenced by chemical charge and reaction time. In this paper, several lignin model compounds were used to illuminate the interaction of oxygen and chlorine dioxide by varying the position of O and D(OD, DO, ODO and DOD), and gas chromatography method was used to investigate the degradation of lignin by determining the content of methoxyl groups in lignin. It was shown that structural properties of lignin models were more influential on the degradation and demethylation of lignin than the above combination. Combination of oxygen and chlorine dioxide, however, was more effective in degradation of lignin than only one stage, and three stages than two stages.

The Numerical Simulation of Ultrafine $SiO_2$ Particle Fabrication and Deposition by Using the Tube Furnace Reactor (튜브형 가열로 반응기를 이용한 초미립 $SiO_2$ 입자의 제조 및 증착에 대한 수치모사)

  • 김교선;현봉수
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.11
    • /
    • pp.1246-1254
    • /
    • 1995
  • A numerical model for fabrication and deposition of ultrafine SiO2 particles were proposed in the simplified horizontal MCVD apparatus using tube furnace reactor. The model equations such as energy and mass balance equations and the 0th, 1st and 2nd moment balance equations of aerosols were considered in the reactor. The phenomena of SiCl4 chemical reaction, SiO2 particle formation and coagulation, diffusion and thermophoresis of SiO2 particles were included in the aerosol dynamic equation. The profiles of gas temperature, SiCl4 concentration and SiO2 particle volume were calculated for standard conditions. The concentrations, sizes and deposition efficiencies of SiO2 particles were calculated, changing the process conditions such as tube furnace setting temperature, total gas flow rate and inlet SiCl4 concentration.

  • PDF

Facilitated Transport of Cr(VI) through a Supported Liquid Membrane with a Carrier

  • Park, Sang-Wook;Lee, Jae-Wook;Kim, Sung-Soo;Choi, Byoung-Sik
    • Journal of the Korean Applied Science and Technology
    • /
    • v.20 no.2
    • /
    • pp.154-164
    • /
    • 2003
  • This paper has applied a simple model to the mass transfer mechanism of Cr(VI) with crownether in a batch-type, supported liquid membrane module. Concentration at pH 3 are as follows : 0.012 kmol/$m^3{\le}$18-crown-6${\le}$0.036 kmol/$m^3$ and 20 g/$m^3{\le}$ Cr(VI)${\le}$500 g/$m^3$. The measured values of forward- and backward-reaction rate constants between Cr(VI) and 18-crown-6 were used to simulate the model with the mass conservation equation and associated boundary conditions. Comparison between the experimental and simulated facilitated factor of Cr(VI) transport led to classification of reaction regions.

A Study of Hydrogen Desorption in Dy2Co7-H System (Dy2Co7-H System에서 수소(水素)의 Desorption에 관한 연구(硏究))

  • Nam, ln-Tak
    • Journal of Industrial Technology
    • /
    • v.1
    • /
    • pp.47-51
    • /
    • 1981
  • A Kinetic model of desorption of hydrogen in $Dy_2Co_7-H$ system has been suggested and rate equation of each step of the model has been compared with experimental results. The reat controlling step was hydrogen recombination in metal surface. The activation energy of over-all reaction was about 23kcal/mole.

  • PDF

A Study on Classification Evaluation Prediction Model by Cluster for Accuracy Measurement of Unsupervised Learning Data (비지도학습 데이터의 정확성 측정을 위한 클러스터별 분류 평가 예측 모델에 대한 연구)

  • Jung, Se Hoon;Kim, Jong Chan;Kim, Cheeyong;You, Kang Soo;Sim, Chun Bo
    • Journal of Korea Multimedia Society
    • /
    • v.21 no.7
    • /
    • pp.779-786
    • /
    • 2018
  • In this paper, we are applied a nerve network to allow for the reflection of data learning methods in their overall forms by using cluster data rather than data learning by the stages and then selected a nerve network model and analyzed its variables through learning by the cluster. The CkLR algorithm was proposed to analyze the reaction variables of clustering outcomes through an approach to the initialization of K-means clustering and build a model to assess the prediction rate of clustering and the accuracy rate of prediction in case of new data inputs. The performance evaluation results show that the accuracy rate of test data by the class was over 92%, which was the mean accuracy rate of the entire test data, thus confirming the advantages of a specialized structure found in the proposed learning nerve network by the class.

The Rate Maxima and Hammett Correlation for the Nucleophilic Substitution (친핵성 치환반응에서 최대속도현상과 Hammett상관관계)

  • 성대동;임귀택
    • The Korean Journal of Food And Nutrition
    • /
    • v.8 no.3
    • /
    • pp.172-183
    • /
    • 1995
  • The nucleophilic substitution reactions of p-substituted benzyl bromide with l-substituted N,N-dimethylanilines in methanol and acetonitrile binary solvent mixture which is known to an isodielectric solvent system kinetically and the results are as follows. The positive charge is developed on the reaction center of the substrate and it means that the bond cleavage is preceded more than bond formation in the transition state on the analogy of Hammett px values. The bond form3tlon is not progressed in the case of electron donating substituent of substrate. However, the bond formation is much developed in the case of electron withdrawing substituent of substrate on the analogy of Hammett py values. The nucleophilic attacking ability is shown a highest at 80% (V/V) methanol content and the bond formation is well progressed at the same methanol composition on the result of a cross interaction coefficient, pxy. The result of transition state structure that is applicated to the potential energy surface model is in accord with the result that Is applicated to the reaction susceptibilities. The reaction Is subject to the polarity-polarizability term more than the hydrogen bond donor acidity term by application to the solvatochromic parameter eouation.

  • PDF

Reactivity of Coal Char Gasification with $CO_2$ at Elevated Pressure (가압하 석탄 촤의 $CO_2$ 가스화 반응성 연구)

  • 박호영;안달홍;김시문;김종진
    • Journal of Energy Engineering
    • /
    • v.12 no.3
    • /
    • pp.231-240
    • /
    • 2003
  • Reactivity of Char-CO$_2$ gasification of five coals for power generation was investigated with PTGA in the temperature range 850∼1000$^{\circ}C$ and the pressure range 0.5∼2.0 MPa. The effect of coal rank, initial char characteristics and pressure on the reaction rate was evaluated for five chars. The reactivity of low lank coal char was better than that of high rank coal char, and this could be explained with the initial pore structure and surface area of char. Meso/macro-pores of char seems to markedly affect char reactivity by way of providing channels for diffusion of reactant gas into the reactive surface area. For the range of tested pressure, the reaction rate is proportional to CO$_2$ partial pressure and the reaction order ranges from 0.4 to 0.7 for five chars. The effect of total pressure on the reaction rate was small, and kinetic parameters, based on the unreacted core model, were obtained for five chars.

Marked Difference in Solvation Effects and Mechanism between Solvolyses of Substituted Acetylchloride with Alkyl Groups and with Aromatic Rigns in Aqueous Fluorinated Alcohol and in 2,2,2-Trifluoroethanol-Ethanol Solvent Systems

  • Oh, Yung-Hee;Jang, Gyeong-Gu;Lim, Gyi-Taek;Ryu, Zoon-Ha
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.8
    • /
    • pp.1089-1096
    • /
    • 2002
  • Solvolyses rate constants of trimethylacetyl chloride (2), isobutyryl chloride (3), diphenylacetyl chloride (4) and p-methoxyphenylacetyl chloride (5) in 2,2,2-trifluoroethanol (TFE)-water, 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP)-water and TFE-et hanol solvent systems at $10^{\circ}C$ are determined by a conductimetric method. Kinetic solvent isotope effects (KSIE) are reported from additional kinetic data for methanolyses of various substituted acetylchlorides in methanol According to the results of those reactions analyzed in terms of rate-rate profiles,extended Grunwald-Winstein type correlations, application of a third order reaction model based a general base catalyzed (GBC) and KSIE values. Regardless of the kind of neighboring groups (CH3- or Ph-groups) of reaction center, for aqueous fluorinated alcohol systems, solvolyses of 2, 3, 4, and 5 were exposed to the reaction with the same mechanism (a loose SN2 type mechanism by electrophilic solvation) controlled by a similarity of solvation of the transition sate (TS). Whereas, for TFE-ethanol solvent systems, the reactivity depended on whether substituted acetyl chloride have aromatic rings (Ph-) or alkyl groups (CH3-); the solvations by the predominant stoichiometric effect (third order reaction mechanism by GBC and/or by push-pull type) for Ph- groups (4 and 5) and the same solvation effects as those shown in TFE-water solvent systems for CH3- groups (2 and 3) were exhibited Such phenomena can be interpreted as having relevance to the inductive effect ( $\sigmaI)$ of substituted groups; the plot of log (KSIE) vs. ${\sigma}I$ parameter give an acceptable the linear correlation with r = 0.970 (slope = 0.44 $\pm$ 0.06, n = 5).

Simulation of Pervaporation Process Through Hollow Fiber Module for Treatment of Reactive Waste Stream from a Phenolic Resin Manufacturing Process (페놀수지 생산공정에서 배출되는 반응성 폐수처리를 위한 중공사막 모듈 투과증발 공정모사)

  • C. K Yeom;F. U. Baig
    • Membrane Journal
    • /
    • v.13 no.4
    • /
    • pp.257-267
    • /
    • 2003
  • For the treatment of reactive phenolic resin waste, a simulation model of pervaporative dehydration process has been developed through hollow fiber membrane module. Some of basic parameters were determined directly from dehydration of the waste liquid through a flat sheet membrane to get realistic values. The simulation model was verified by comparing the simulated values with experimental data obtained from hollow fiber membrane module. Hollow fiber membranes with active layer coated on inside fiber were used, and feed flew through inside hollow fiber. Feed flow rate affected membrane performances and reaction by providing a corresponding temperature distribution of feed along with fiber length. Feed temperature is also a crucial factor to determine dehydration and reaction behavior by two competing ways; increasing temperature increases permeation rate as well as water formation rate. Once the permeate pressure is well below the saturated vapor pressure of feed, permeate pressure had a slightly negative effect on permeation performance by slightly reducing driving force. As the pressure approached the vapor pressure of feed, dehydration performances declined considerably due to the activity ratio of feed and permeate.

Effects on the Oxidation Rate with Silicon Orientation and Its Surface Morphology (실리콘배향에 따른 산화 속도 영향과 표면 Morphology)

  • Jeon, Bup-Ju;Oh, In-Hwan;Um, Tae-Hoon;Jung, Il-Hyun
    • Applied Chemistry for Engineering
    • /
    • v.8 no.3
    • /
    • pp.395-402
    • /
    • 1997
  • The $SiO_2$ films were prepared by ECR(electron cyclotron resonance) plasma diffusion method, Deal-Grove model and Wolters-Zegers-van Duynhoven model were used to estimate the oxidation rate which was correlated with surface morphology for different orientation of Si(100) and Si(111). It was seen the $SiO_2$ thickness increased linearly with initial oxidation time. But oxidation rate slightly decrease with oxidation time. It was also shown that the oxidation process was controlled by the diffusion of the reactive species through the oxide layer rather than by the reaction rate at the oxide interface. The similar time dependency has been observed for thermal and plasma oxidation of silicon. From D-G model and W-Z model, the oxidation rate of Si(111) was 1.13 times greater than Si(100) because Si(111) had higher diffusion and reaction rate, these models more closely fits the experimental data. The $SiO_2$ surface roughness was found to be uniform at experimental conditions without etching although oxidation rate was increased, and to be nonuniform due to etching at experimental condition with higher microwave power and closer substrate distance.

  • PDF