• Title/Summary/Keyword: Reaction rate model

Search Result 690, Processing Time 0.03 seconds

Generation of Reactive Oxygen Species by Nonenzymatic Reaction of Menadione with Protein Thiols in Plasma (Menadione과 Plasma내의 Protein Thiol의 비효소적인 화학반응에 의한 활성산소 생성)

  • 정선화;이무열;이주영;장문정;정진호
    • Toxicological Research
    • /
    • v.13 no.3
    • /
    • pp.223-228
    • /
    • 1997
  • Quinones have been reported to undergo nonenzymatic reaction with thiols to generate reactive oxygens. It is therefore possible that the nonenzymatic reaction of quinones with thiols in plasma could lead to potentJared cellular toxicity or disease. When 1 mM menadione was added in plasma under pH 11.2, 7.4 and 5.0, the increase in oxygen consumption rate was the order of pH 11.2 > pH 7.4 > pH 5.0. In addition, oxygen consumption rates under plasma anticoagulated with trisodium citrate solution (pH 7.85) was significantly higher than those with acid-citrate-dextrose solution (pH 6.87). SOD and catalase reduced the rate of oxygen consumption induced by menadione in plasma. Taken together, these results suggest that the menadione-induced increased oxygen consumption was due to nonenzymatic reaction of menadione with thiols in the plasma. The presence of plasma has an additive effect on the increased oxygen consumption rates induced by the menadione treatments on our model tissue, platelets, as compared between washed platelet (WP) and platelet rich plasma (PRP). Cytotoxicity, as determined by LDH release, are well correlated with the oxygen consumption rates observed in each system and strongly suggest that menadione-induced cytotoxicity can be increased with the presence of blood plasma.

  • PDF

Reactivity Study on the Kideco Coal Catalytic Coal Gasification under CO2 Atmosphere Using Gas-Solid Kinetic Models (기-고체 반응 모델을 이용한 Kideco탄의 이산화탄소 촉매 석탄가스화 반응 특성)

  • Lee, Do Kyun;Kim, Sang Kyum;Hwang, Soon Cheol;Lee, Si Hyun;Rhee, Young Woo
    • Clean Technology
    • /
    • v.21 no.1
    • /
    • pp.53-61
    • /
    • 2015
  • In this study, we have investigated the kinetics on the char-CO2 catalytic gasification reaction. Thermogravimetric analysis (TGA) experiments were carried out for char-CO2 catalytic gasification of an Indonesian Kideco sub-bituminous. Na2CO3 and K2CO3 were selected as catalysts which were physically mixed with coal. The char-CO2 catalytic gasification reaction showed a rapid increase of carbon conversion rate at 850 ℃, 60 vol% CO2, and 7 wt% Na2CO3. At the isothermal conditions ranging from 750 ℃ to 900 ℃, the carbon conversion rates increased as the temperature increased. Four kinetic models for gas-solid reaction including the shrinking core model (SCM), random pore model (RPM), volumetric reaction model (VRM), and modified volumetric reaction model (MVRM) were applied to the experimental data against the measured kinetic data. The gasification kinetics were suitably described by the MVRM for the Kideco sub-bituminous. The activation energies for each char mixed with Na2CO3 and K2CO3 were found 55-71 kJ/mol and 69-87 kJ/mol.

Maillard Reaction in an Intermediate Moisture Model Food System (중간수분식품 모델계에서의 마이야르 반응에 관한연구)

  • Kim, Yun-Ji;Choi, Hyeong-Taeg;Yu, Ju-Hyun;Oh, Doo-Hwan
    • Korean Journal of Food Science and Technology
    • /
    • v.19 no.2
    • /
    • pp.113-118
    • /
    • 1987
  • An intermediate moisture model food system was used to investigate the effects of water activity (Aw), temperature, pH and polyethyleneglycol (PEG) on the Maillard reaction. The initial molar ratio of glucose to lysine was varied from one half to four. The maximum Maillard reaction was obtained from an initial glucose/lysine molar ratio of approximately three. The rate of Maillard reaction showed a maximum in the range of water activity of a normal intermediate moisture food. 'the model food system was prepared to hold water activity range of 0.47-0.84 and the samples were held at various temperatures. The maximum browning rate occurred at an Aw value of approximately 0.89 at $40^{\circ}C$ and $60^{\circ}C$, 0.74 at $30^{\circ}C$ and 0.67 at $20^{\circ}C$, respectively. The Arrhenius activiation energies for nonenzymatic browning pigment production were 18.03, 15.18 and 9.90 Kcal/mole for the sample with Aw 0.84, 0.74 and 0.67. When the pH of the model system was increased, a significant increase in the browning reaction was observed. On the inhibitive effects of PEG, the higher degree of polymerization, the more inhibition of browning reaction.

  • PDF

Depolymerization of PET by Ethylene Glycol (에틸렌글리콜을 이용한 PET 해중합 특성)

  • Hwang, Hwidong;Kim, Bokyung;Woo, Daesik;Han, Myungwan
    • Korean Chemical Engineering Research
    • /
    • v.47 no.6
    • /
    • pp.683-687
    • /
    • 2009
  • A method for depolymerization of PET by catalyzed glycolysis with an excess ethylene glycol(EG) to recover bis-hydroxyethyl terephthalate(BHET) was investigated. The product was analyzed by high-performance liquid chromatography(HPLC). Effects of operation variables such as reaction temperature, reaction time, EG/PET weight ratio were examined and kinetics of the glycolysis was studied. High temperature increases the rate of depolymerization and the yield of BHET. But, repolymerization rate was also high at too high temperature and the yield at $250^{\circ}C$ was shown to be lower than that at $230^{\circ}C$. First order reaction model was proposed to describe the glycolysis reaction. Activation energies for the reaction were obtained to be 37.8 kJ/mol above $210^{\circ}C$ and 149.6 kJ/mol below $210^{\circ}C$, which shows the glycolysis reaction is a multiple reaction. A maximum yield of BHET of 71% was achieved at a reaction temperature of $230^{\circ}C$ for 6 hr with an EG/PET weight ratio 4.

Modeling of temperature history in the hardening of ultra-high-performance concrete

  • Wang, Xiao-Yong
    • Journal of the Korea Institute of Building Construction
    • /
    • v.14 no.3
    • /
    • pp.273-284
    • /
    • 2014
  • Ultra-high-performance concrete (UHPC) consists of cement, silica fume (SF), sand, fibers, water and superplasticizer. Typical water/binder ratios are 0.15 to 0.20 with 20 to 30% silica fume. In the production of ultra-high performance concrete, a significant temperature rise at an early age can be observed because of the higher cement content per unit mass of concrete. In this paper, by considering the production of calcium hydroxide in cement hydration and its consumption in the pozzolanic reaction, a numerical model is proposed to simulate the hydration of ultra-high performance concrete. The heat evolution rate of UHPC is determined from the contributions of cement hydration and the pozzolanic reaction. Furthermore, by combining a blended-cement hydration model with the finite-element method, the temperature history in the hardening of UHPC is evaluated using the degree of hydration of the cement and the silica fume. The predicted temperature-history curves were compared with experimental data, and a good correlation was found.

Experimental Study of Fire Characteristics of a Tray Flame Retardant Cable (트레이용 난연 전력 케이블의 화재특성에 관한 실험적 연구)

  • Kim, Sung Chan;Kim, Jung Yong;Bang, Kyoung Sik
    • Journal of the Korean Society of Safety
    • /
    • v.28 no.3
    • /
    • pp.39-43
    • /
    • 2013
  • The present study has been conducted to investigate the fire combustion properties and fire behavior of an IEEE-383 qualified flame retardant cable. The reference reaction rate and reference temperature which are commonly used in pyrolysis model of fire propagation process was obtained by the thermo-gravimetric analysis of the cable component materials. The mass fraction of FR-PVC sheath abruptly decreased near temperature range of $250{\sim}260^{\circ}C$ and its maximum reaction rate was about $2.58{\times}10^{-3}$[1/s]. For the XLPE insulation of the cable, the temperature causing maximum mass fraction change was ranged about $380{\sim}390^{\circ}C$ and it has reached to the maximum reaction rate of $5.10{\times}10^{-3}$[1/s]. The flame retardant cable was burned by a pilot flame meker buner and the burning behavior of the cable was observed during the fire test. Heat release rate of the flame retardant cable was measured by a laboratory scale oxygen consumption calorimeter and the mass loss rate of the cable was calculated by the measured cable mass during the burning test. The representative value of the effective heat of combustion was evaluated by the total released energy integrated by the measured heat release rate and burned mass. This study can contribute to study the electric cable fire and provide the pyrolysis properties for the computational modeling.

Kinetic study on Low-rank Coal Including K2CO3, Na2CO3, CaCO3 and Dolomite Gasification under CO2 Atmosphere (이산화탄소 분위기에서 K2CO3, Na2CO3, CaCO3 및 Dolomite가 첨가된 저급탄의 가스화에 대한 반응특성연구)

  • Hwang, Soon Choel;Kim, Sang Kyum;Park, Ji Yun;Lee, Do Kyun;Lee, Si Hyun;Rhee, Young Woo
    • Clean Technology
    • /
    • v.20 no.1
    • /
    • pp.64-71
    • /
    • 2014
  • We have investigated the effects of various additives on Eco coal gasification under $CO_2$ atmosphere. The temperature ranges from $750{\sim}900^{\circ}C$ and the gasification experimental was carried out with Eco coal adding 7 wt% $K_2CO_3$, $Na_2CO_3$, $CaCO_3$, Dolomite, and non-additive under $N_2$ and $CO_2$ gas mixture. At $850^{\circ}C$, we observed that the reaction rate increased when the concentration of $CO_2$ increased. However, we also observed that the increment of reaction rate was small at more than 70% of the concentration of $CO_2$. The additives activity was ranked as 7 wt% $Na_2CO_3$ > 7 wt% $K_2CO_3$ > non-additive > 7 wt% Dolomite > 7 wt% $CaCO_3$ at $850^{\circ}C$. At the temperatures of $750^{\circ}C$, $800^{\circ}C$, $850^{\circ}C$, and $900^{\circ}C$, when the temperature increased, the gasification rate increased. The gasification was suitably described by the volumetric reaction model. Using volumetric reaction model, the activation energy of Eco coal including 7 wt% $Na_2CO_3$ gasification was 83 kJ/mol, which was the lowest value among all the alkaline additives.

Extinction Limits of Low Strain Rate Counterflow Nonpremixed Flames in Normal Gravity (정상 중력장에서 낮은 스트레인율을 갖는 대향류 비예혼합화염의 소화한계)

  • Oh, Chang-Bo;Choi, Byung-Il;Kim, Jeong-Soo;Hamins, Anthony;Park, Jeong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.9 s.240
    • /
    • pp.997-1005
    • /
    • 2005
  • The extinction characteristics of low strain rate normal gravity (1-g) nonpremixed methane-air flames were studied numerically and experimentally. A time-dependent axisymmetric two-dimensional (2D) model considering buoyancy effects and radiative heat transfer was developed to capture the structure and extinction limits of 1-g flames. One-dimensional (1D) computations were also conducted to provide information on 0-g flames. A 3-step global reaction mechanism was used in both the 1D and 2D computations to predict the measured extinction limit and flame temperature. A specific maximum heat release rate was introduced to quantify the local flame strength and to elucidate the extinction mechanism. Overall fractional contribution by each term in the energy equation to the heat release was evaluated to investigate the multi-dimensional structure and radiative extinction of 1-g flames. Images of flames were taken for comparison with the model calculation undergoing extinction. The two-dimensional numerical model was validated by comparing flame temperature profiles and extinction limits with experiments and ID computation results. The 2D computations yielded insight into the extinction mode and flame structure of 1-g flames. Two combustion regimes depending on the extinction mode were identified. Lateral heat loss effects and multi-dimensional flame structure were also found. At low strain rates of 1-g flame ('Regime A'), the flame is extinguished from the weak outer flame edge, which is attributed to multi-dimensional flame structure and flow field. At high strain rates, ('Regime B'), the flame extinction initiates near the flame centerline due to an increased diluent concentration in reaction zone, which is the same as the extinction mode of 1D flame. These two extinction modes could be clearly explained with the specific maximum heat release rate.

New Bleaching Method for KP with Permanganate(III) -Evaluation of Role of Oxalic Acid as a Acid Catalyst and a Reductant on the Permanganate Oxidation with Phenolic Model Compounds- (과망간산칼륨을 이용한 KP의 새로운 표백법(제3보) -모델화합물 실험에서 Oxalic acid 첨가의 평가-)

  • Yasuo Kojima
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.33 no.1
    • /
    • pp.73-79
    • /
    • 2001
  • Stricter environmental demands have increased the need to replace conventional C/D bleaching sequence by chlorine-free sequence. Permanganate is well known as a powerful oxidant and have been used industrially in variable fields. However, it has considered to be difficult to use permanganate as a bleaching reagent because of its strong oxidative effect decreasing the viscosity of pulps extremely. We have tried to use permanganate as a bleaching reagent for KP under the mild condition and it was clear that pernanganate oxidized lignin remained in pulps selectively and increased pulp brightness decreasing K number of pulps with small degradation of cellulose. We have employed the neutral condition in the permanganate bleaching process in this study. In this case, permanganate was converted to manganese dioxide after bleaching reaction. The manganese dioxide is remained in the treated pulp fibers because of its insolublity in water. So it was required to reduction the manganese oxide to manganese ion by using reductants with acid. In this paper, we proposed to use oxalic acid as a reducing reagent converting manganese oxide to manganese ion after bleaching reaction. Oxalic acid plays the role as a reductant and a acid, so post-treatment after bleaching became to be easy by using oxalic acid. On the study using lignin model compounds, it was clear that permaganate react with phenols firstly, after that oxalic acid reduce the manganese oxide to manganese ion in the mixture of permanganate, phenols and oxalic acid. Several lignin model compounds ($\textit{p}$-hydroxybenzaldehyde, vanillin, syringaldehyde, veratraldehyde) are selected to elucidate the effect of substituents on reaction rate and its mechanism with permanganate including oxalic acid in this study. Except for veratraldehyde, the rate of oxidative degradation of phenolic compounds by permanganate with oxalic acid are higher than neutral condition. Especially, the degradation rate of $\textit{p}$-hydroxybenzaldehyde are strongly dependent on pH of reaction mixture. On the other hand, the degradation rate of veratraldehyde are decreased with decreasing pH and main degradation product is veratric acid. This result indicate that pH of bleaching liquor should be kept over 2 to degrade of non-phenolic lignin in the pulps effectively in permanganate bleaching.

  • PDF

Kinetic Study on Char-CO2 Catalytic Gasification of an Indonesian lignite (인도네시아 갈탄의 촤-CO2 촉매가스화 반응특성연구)

  • Lee, Do Kyun;Kim, Sang Kyum;Hwang, Soon Choel;Lee, Si Hoon;Rhee, Young Woo
    • Korean Chemical Engineering Research
    • /
    • v.52 no.4
    • /
    • pp.544-552
    • /
    • 2014
  • In this study, We have investigated the kinetics on the char-$CO_2$ gasification reaction. Thermogravimetric analysis (TGA) experiments were carried out for char-$CO_2$ catalytic gasification of an Indonesian Roto lignite. $Na_2CO_3$, $K_2CO_3$, $CaCO_3$ and dolomite were selected as catalyst which was physical mixed with coal. The char-$CO_2$ gasification reaction showed rapid an increase of carbon conversion rate at 60 vol% $CO_2$ and 7 wt% $Na_2CO_3$ mixed with coal. At the isothermal conditions range from $750^{\circ}C$ to $900^{\circ}C$, the carbon conversion rates increased as the temperature increased. Three kinetic models for gas-solid reaction including the shrinking core model (SCM), volumetric reaction model (VRM) and modified volumetric reaction model (MVRM) were applied to the experimental data against the measured kinetic data. The gasification kinetics were suitably described by the MVRM model for the Roto lignite. The activation energies for each char mixed with $Na_2CO_3$ and $K_2CO_3$ were found a 67.03~77.09 kJ/mol and 53.14~67.99 kJ/mol.