• Title/Summary/Keyword: Reaction rate

Search Result 5,774, Processing Time 0.029 seconds

Prediction of MCFC Performance Using Three Dimensional Heat and fluid Flow Analysis with Electrochemical Reaction (전기 화학 반응을 포함한 3차원 열유동 해석을 이용한 용융탄산염 연료전지의 성능예측)

  • Cho H. M.;Lee K. W.;Choi D. H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2003.08a
    • /
    • pp.219-224
    • /
    • 2003
  • An analysis procedure for the MCFC channel flow has been developed to predict the fuel cell performance. As for the electrochemical reaction, among several chemical reaction models, one that fits the data best is adopted after a comprehensive comparative study. The Wavier-Stokes, energy, and species equations are solved to obtain the velocity, temperature and concentration fields for a specified average current density. The procedure is iterative as the local current density, or the reaction rate, is allowed to vary with the gas composition. A series of calculations are then carried out to examine the effects of gas flow rate, gas composition, gas usage rate, inlet gas temperature, and average current density on the fuel cell performance. The fuel cell characteristics, such as the temperature, current density distributions, and the concentration fields, for various operating conditions are presented and discussed.

  • PDF

The Characteristics of the Flame Propagation Velocity and Volume Integral of Reaction Rate with the Variation of Nozzle Diameter and Fuel Injection Flow Rate for a Liftoff Flame (부상화염에서 노즐직경과 연료유량에 따른 화염전파속도와 체적연소반응속도의 변화 특성에 관한 연구)

  • Ha, Ji-Soo;Kim, Tae-Kwon
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.34 no.2
    • /
    • pp.250-258
    • /
    • 2010
  • A numerical analysis of reactive flow in a liftoff flame is accomplished to elucidate the characteristics of flame propagation velocity and volume integral of reaction rate with the variation of nozzle diameter and fuel injection flow rate in a liftoff flame consisted with fuel rich region, fuel lean region and diffusion flame region. The increase of fuel injection velocity enhances flame propagation velocity for the selected three nozzle diameter(d=0.25, 0.30, 0.35mm), but its effect on the flame propagation velocity is not much greater than 4.3%. The increase of fuel flow rate is directly and linearly related with the volume reaction rate and so the volume reaction rate, not the flame propagation velocity, might be considered to accommodate the variation of fuel flow rate in a liftoff flame.

On Crystallization of Hadong Kaolin Granulated Cylindrically Treated with Aqueous Sodium Hydroxide Solution (원주형으로 성형된 하동고령토의 수산화나트륨 수용액 처리에 의한 결정의 변화)

  • 김면섭
    • Journal of the Korean Ceramic Society
    • /
    • v.15 no.1
    • /
    • pp.21-27
    • /
    • 1978
  • Hadong Kaolin (Halloysite) was granulated cylindrically and treated with 1N aqueous sodium hydroxide solution for 6-48 hrs at 60-10$0^{\circ}C$. The crystalling structure of surface of the products was studied by X-ray powder diffraction method. The reaction rate of halloysite to sodium A zeolite showed a gradual decrease from surface to inner layer. At the surface layer, the reaction mechanism was observed as first order consecutive reaction as follows: halloysitelongrightarrowamorphous aluminosilicatelongrightarrowsodium A zeolitelongrightarrowhydroxysodalite By applying the above reaction mechanism, the rate constants and activation energies was measured.

  • PDF

Kinetics of Reversible Consecutive Reactions

  • Park, Tae Jun
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.1
    • /
    • pp.243-245
    • /
    • 2013
  • Rate equations are exactly solved for the reversible consecutive reaction of the first-order and the time-dependence of concentrations is analytically determined for species in the reaction. With the assumption of pseudo first-order reaction, the calculation applies and determines the concentration of product accurately and explicitly as a function of time in the unimolecular decomposition of Lindemann and in the enzyme catalysis of Michaelis-Menten whose rate laws have been approximated in terms of reactant concentrations by the steady-state approximation.

N-Oxidation of Pyrazines by Bromamine-B in Perchloric Acid Medium: Kinetic and Mechanistic Approach

  • Puttaswamy;Shubha, J.P.
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.9
    • /
    • pp.1939-1945
    • /
    • 2009
  • Kinetic investigations on the oxidation of pyrazine and four 2-substituted pyrazines viz., 2-methylpyrazine, 2-ethylpyrazine, 2-methoxypyrazine and 2-aminopyrazine by bromamine-B (BAB) to the respective N-oxides have been studied in HCl$O_4$ medium at 303 K. The reactions show identical kinetics being first-order each in $[BAB]_o\;and\;[pyrazine]_o$, and a fractional- order dependence on $[H^+]$. Effect of ionic strength of the medium and addition of benzenesulfonamide or halide ions showed no significant effect on the reaction rate. The dielectric effect is positive. The solvent isotope effect was studied using $D_2$O. The reaction has been studied at different temperatures and activation parameters for the composite reaction have been evaluated from the Arrhenius plots. The reaction showed 1:1 stoichiometry and the oxidation products of pyrazines were characterized as their respective N-oxides. Under comparable experimental conditions, the oxidation rate of pyrazines increased in the order: 2-aminopyrazine > 2-methoxypyrazine > 2-ethylpyrazine > 2-methylpyrazine > pyrazine. The rates correlate with the Hammett $\sigma$ relationship and the reaction constant $\rho$ was found to be -0.8, indicating that electron donating centres enhance the rate of reaction. An isokinetic temperature of $\beta$ = 333 K, indicated that the reaction was enthalpy controlled. A mechanism consistent with the experimental results has been proposed in which the rate determining step is the formation of an intermediate complex between the substrate and the diprotonated species of the oxidant. The related rate law in consistent with observed results has been deduced.

Anaerobic/Aerobic Biological Reaction Characteristics of the Marine Products Industry Wastewater (수산물가공폐수의 혐기.호기 생물학적 반응특성)

  • Choi, Yong-Bum;Kim, Gau-You;Kwon, Jae-Hyouk
    • Journal of Environmental Health Sciences
    • /
    • v.34 no.6
    • /
    • pp.452-458
    • /
    • 2008
  • This study was undertaken to establish the biological reaction characteristics of the marine products industry wastewater which contains high concentrations of organic matter and saline. As the S/I is varied from 0.3 to 1.2, the results were follows : the observed ultimate anaerobic biodegradability varied from 72.0 to 88.0%, the first order reaction rate varied from 0.1735 to $0.3420\;day^{-1}$ and the second order reaction rate varied from 0.0132 to $0.0295\;day^{-1}$. When S/I was 0.9, the first order reaction rate had a maximum value, but the variations of the second order reaction rate were less than 1st-order reaction rate. When the operation time exceeded 2 days the gas production rapidly increased. The source of this rapid increase was due to that the activity of the granular sludge used in this study being faster than that of conventional sludge. Under aerobic condition, the characteristics of organic matter were as follows: the marine industry wastewater used in this study contained about 81% of biodegradable matter, and it was divided into readily biodegradable COD(Ss), slowly biodegradable COD(Xs), soluble COD(Si) and inert suspended COD (Xi). The percentages of each COD were 87.3%, 23.9%, 6.4% and 12.4% respectively.

Dephosphorylation of Diphenyl-4-Nitrophenyl Phosphinate(DPNPIN) onto 2-Alkylbenzimidazolide Anion in TTABr Micellar Solution (TTABr 미셀 용액속에서 2-알킬벤즈이미다졸 음이온에 의해 추진되는 디페닐-4-니트로페닐 포스페네이트(DPNPIN)의 탈인산화반응)

  • Kim, Jeung-Bea
    • Journal of Environmental Science International
    • /
    • v.24 no.8
    • /
    • pp.981-992
    • /
    • 2015
  • This study is mainly focused on micellar effect of tetradecyltrimethyl ammonium bromide(TTABr) solution including alkylbenzimidazole(R-BI) on dephosphorylation of diphenyl-4-nitrophenylphosphinate(DPNPIN) in carbonate buffer(pH 10.7). Dephosphorylation of DPNPIN is accelerated by $BI^{\Theta}$ ion in $10^2$ M Carbonate buffer(pH 10.7) of $4{\times}10^{-4}$ M TTABr solution up to 80 times as compared with the reaction in Carbonate buffer by no benzimidazole(BI) solution of TTABr. The value of pseudo first order rate constant($k_{\psi}$) of the reaction in TTABr solution reached a maximum rate constant increasing micelle concentration. The reaction mediated by $R-BI^{\Theta}$ in micellar solutions are obviously slower than those by $BI^{\Theta}$, and the reaction rate were decreased with increase of lengths of alkyl groups. It seems due to steric effect of alkyl groups of $R-BI^{\Theta}$ in Stern layer of micellar solution. The surfactant reagent, TTABr, strongly catalyzes the reaction of DPNPIN with R-BI and its anion($R-BI^{\Theta}$) in Carbonate buffer(pH 10.7). For example, $4{\times}10^{-4}$ M TTABr in $1{\times}10^{-4}$ M BI solution increase the rate constant($k_{\psi}=99.7{\times}10^{-4}1/sec$) of the dephosphorylation by a factor ca. 28, when compared with reaction($k_{\psi}=3.5{\times}10^{-4}1/sec$) in BI solution(without TTABr). And no TTABr solution, in BI solution increase the rate constant($k_{\psi}=3.5{\times}10^{-4}1/sec$) of the dephosphorylation by a factor ca. 39, when compared with reaction ($k_{\psi}=1.0{\times}10^{-5}1/sec$) in water solution(without BI).

Kinetics and Mechanism for Alkaline Hydrolysis of C. I. Disperse Blue 79 (C. I. Disperse Blue 79의 알칼리 가수분해 반응속도 및 반응메카니즘)

  • Park, Geon Yong;Park, Chang Hyeok;Park, Byeong Gi
    • Textile Coloration and Finishing
    • /
    • v.13 no.5
    • /
    • pp.24-24
    • /
    • 2001
  • Kinetics and mechanism for alkaline hydrolysis of C. I. Disperse Blue 79(B-79) which is 4-N, N-diacetoxyethyl-2-acylamino-5-ethoxy -2′-bromo-4′,6′-dinitroazobenzene were investigated. The color strength of B-79 in acetone/water solutions of various NaOH concentrations decreased continuously. The hydrolysis rate of B-79 increased with increasing alkali concentration and appeared following first order reaction. The observed rate constants for various concentrations of B-79 showed similar values, and B-79 was hydrolyzed by first order reaction for dye concentration. Therefore, it was confirmed that the overall reaction follow second order kinetics and proceed via S/sub n/2 reaction. From the study on kinetics and spectrometric analysis, it was proposed that the rate determining step of the hydrolysis reaction of B-79 is the nucleophilic substitution reaction - that is the reaction of the rapid attack of $OH^{-}$ on the carbon atom, which is in acceptor ring, adjacent to azo group to break the C-N bond. And it was also found that the final hydrolysis products of B-79 include both the acceptor ring in the form of sodium salt and the donor ring possessing 4-N,N-dihydroxyethyl group converted from 4-N,N-diacetoxyethyl group.

Kinetics and Mechanism for Alkaline Hydrolysis of C. I. Disperse Blue 79 (C. I. Disperse Blue 79의 알칼리 가수분해 반응속도 및 반응메카니즘)

  • 박건용;박창혁;박병기
    • Textile Coloration and Finishing
    • /
    • v.13 no.5
    • /
    • pp.312-319
    • /
    • 2001
  • Kinetics and mechanism for alkaline hydrolysis of C. I. Disperse Blue 79(B-79) which is 4-N, N- diacetoxyethyl -2- acylamino-5-ethos y -2'-bromo-4',6'-dinitroazobenzene were investigated. The color strength of B-79 in acetone/water solutions of various NaOH concentrations decreased continuously. The hydrolysis rate of B-79 increased with increasing alkali concentration and appeared following first order reaction. The observed rate constants for various concentrations of B-79 showed similar values, and B-79 was hydrolyzed by first order reaction for dye concentration. Therefore, it was confirmed that the overall reaction follow second order kinetics and proceed via $S_N2$ reaction. From the study on kinetics and spectrometric analysis, it was proposed that the rate determining step of the hydrolysis reaction of B-79 is the nucleophilic substitution reaction - that is the reaction of the rapid attack of OH- on the carbon atom, which is in acceptor ring, adjacent to auto group to break the C-N bond. And it was also found that the final hydrolysis products of B-79 include both the acceptor ring in the form of sodium salt and the donor ring possessing 4-N,N-dihydroxyethyl group converted from 4-N, N-diacetoxyethyl group.

  • PDF

Quantitative Evaluation of the First Order Creatine-Kinase Reaction Rate Constant in in vivo Shunted Ovine Heart Treated with Oxandrolone Using Magnetization Transfer 31P Magnetic Resonance Spectroscopy (MT-31P-MRS) and 1 H/31P Double-Tuned Surface Coil: a Preliminary Study

  • Thapa, Bijaya;Dahl, Marjanna;Kholmovski, Eugene;Burch, Phillip;Frank, Deborah;Jeong, Eun-Kee
    • Investigative Magnetic Resonance Imaging
    • /
    • v.22 no.1
    • /
    • pp.26-36
    • /
    • 2018
  • Purpose: Children born with single ventricle physiology demonstrate poor growth rate and suffer from malnutrition, which lead to increased morbidity and mortality in this population. We assume that an anabolic steroid, oxandrolone, will promote growth in these infants by improving myocardial energy utilization. The purpose of this paper is to study the efficacy of oxandrolone on myocardial energy consumption in these infants. Materials and Methods: We modeled single ventricle physiology in a lamb by prenatally shunting the aorta to the pulmonary artery and then postnatally, we monitored cardiac energy utilization by quantitatively measuring the first order reaction rate constant, $k_f$ of the creatine-kinase reaction in the heart using magnetization transfer $^{31}P$ magnetic resonance spectroscopy, home built $^1H/^{31}P$ transmit/receive double tuned coil, and transmit/receive switch. We also performed cine MRI to study the structure and dynamic function of the myocardium and the left ventricular chamber. The spectroscopy data were processed using home-developed python software, while cine data were analyzed using Argus software. Results: We quantitatively measured both the first order reaction rate constant and ejection fraction in the control, shunted, and the oxandrolone-treated lambs. Both $k_f$ and ejection fraction were found to be more significantly reduced in the shunted lambs compared to the control lambs, and they are increased in oxandrolone-treated lambs. Conclusion: Some improvement was observed in both the first order reaction rate constant and ejection fraction for the lamb treated with oxandrolone in our preliminary study.