• Title/Summary/Keyword: Reaction product

Search Result 2,081, Processing Time 0.029 seconds

Stabilization/Solidification of Radioactive LiCl-KCl Waste Salt by Using SiO2-Al2O3-P2O5 (SAP) Inorganic Composite: Part 2. The Effect of SAP Composition on Stabilization/Solidification (SiO2-Al2O3-P2O5 (SAP) 무기복합체를 이용한 LiCl-KCl 방사성 폐기물의 안정화/고형화: Part 2. SAP조성에 따른 안정화/고형화특성 변화)

  • Ahn, Soo-Na;Park, Hwan-Seo;Cho, In-Hak;Kim, In-Tae;Cho, Yong-Zun
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.10 no.1
    • /
    • pp.27-36
    • /
    • 2012
  • Metal chloride waste is generated as a main waste streams in a series of electrolytic processes of a pyrochemical process. Different from carbonate or nitrate salt, metal chloride is not decomposed into oxide and chlorine but it is just vaporized. Also, it has low compatibility with conventional silicate glasses. Our research group adapted the dechlorination approach for the immobilization of waste salt. In this study, the composition of SAP ($SiO_2-Al_2O_3-P_2O_5$) was adjusted to enhance the reactivity and to simplify the solidification process as a subsequent research. The addition of $Fe_2O_3$ into the basic SAP decreased the SAP/Salt ratio in weight from 3 for SAP 1071 to 2.25 for M-SAP( Fe=0.1). The experimental results indicated that the addition of $Fe_2O_3$ increased the reactivity of M-SAP with LiCl-KCl but the reactivity gradually decreased above Fe=0.1. Also, introducing $B_2O_3$ into M-SAP requires no glass binder for the consolidation of reaction products. U-SAP ($SiO_2-Al_2O_3-Fe_2O_3-P_2O_5-B_2O_3$) could effectively dechlorinate the LiCl-KCl waste and its reaction product could be consolidated as a monolithic form without a glass binder. The leaching test result indicated that U-SAP 1071 was more durable than other SAPs wasteform. By using U-SAP, 1 g of waste salt could generated 3~4 g of wasteform for final disposal. The final volume would be about 3~4 times lower than the glass-bonded sodalite. From these results, it could be concluded that the dechlorination approach using U-SAP would be one of prospective methods to manage the volatile waste salt.

Smile Rearrangement of Herbicidal Flazasulfuron (제초성 Flazasulfuron의 Smile 자리옮김 반응)

  • Lee, Gwnag-Jae;Kim, Yong-Jip;Kim, Dae-Whang;Sung, Nack-Do
    • Applied Biological Chemistry
    • /
    • v.39 no.1
    • /
    • pp.70-76
    • /
    • 1996
  • A series of the herbicidal pyridylsulfonyl areas, none substitutent, 1-(4,6-dimethoxypyrimidine-2-yl)-3-(2-pyridylsulfonyl) urea, 3 and 3-trifluoromethyl substitutent, 1-(4,6-dimethoxypyrimidine-2-yl)-3-(3-trifluoromethyl-2-pyridylsulfonyl) urea, 5(Flazasulfuron) were synthesizied and the rate of hydrolysis of their has been studied in 25%(v/v) aqueous dioxane at $45^{\circ}C$. From the results of solvent effect($m{\ll}1,\;n{\ll}3\;&\;{\mid}m{\mid}{\ll}{\mid}{\ell}{\mid}$), thermodynamic parameter (${\Delta}S^{\neq}=0.54{\sim}\;-2.19\;e.u.\;&\;{\Delta}H^{\neq}=0.025\;Kcal.mol.^{-1}$), hydrolysis product analysis, $pK_a$ constant(3: 4.9 & 5: lit.4.6) and the rate equation, a marked difference in the kinetics of the reaction of 3 and 5(Flazasulfuron) was observed. It may be concluded that the hydrolysis of 5 proceeds through the $A-S_N2Ar$ reaction via conjugate acid$(5H^+)$ below pH 7.0, whereas, above pH 9.0, the hydrolysis proceeds through irreversibly $(E_1)_{anion}$ and reversibly $(E_1CB)_R$ mechanism via conjugate base(CB), respectively. But in case of 5, $A-S_N2Ar,\;(E_1)anion\;and\;(E_1CB)_R$ mechanism involved Smile rearrangement. The mate of rearrangement of 5 to a 3-trifluoromethyl-2-pyridylpyrimidinyl urea(PPU) in acid and 3-trifluoromethyl-2-pyridyl-4.6-dimethoxypyridinyl amine (PPA) in base was increased about 3.5 times by the introduction of trifluoromethyl group in the 3-position on the 2-pyridyl ring. From the basis of these findings, a possible mechanism for the hydrolysis of 5 was proposed and discussed.

  • PDF

A Study of the Environmental Consciousness Influences on the Psychological Reaction of Forest Ecotourists (환경의식에 따른 산림생태관광객의 심리적 반응에 관한 연구)

  • Yan, Guang-Hao;Na, Seung-Hwa
    • Journal of Distribution Science
    • /
    • v.10 no.1
    • /
    • pp.43-52
    • /
    • 2012
  • With the slowdown in environmental issues and the change of environmental consciousness, ecotourism is being discussed in various social fields. Ecotourism is being popularized for environmental protection, and now it is becoming a mainstream product from one of mass tourism. Ecotourism's emphasis on sustainable development in the tourism destination's society, economy, and environment, through ecotourism study and education, enable people to understand the core value of the ecological environment. 2011 was nominated as "the Year of World Forest" by the UN. In the recent years, forests are becoming increasingly important with their own values and functions in environment, economy, society, and culture. In particular, the global environmental issues caused by climate change are becoming an international agenda. Forests are the only effective solution for the carbon dioxide that causes global warming. Moreover, forests constitute a major part of ecotourism, and are now most used by ecotourists. For example, Korea, wherein 60% of the land is forest, attracts ecotourists. With the increasing interests in environment, the number of tourists visiting the ecosystem forest, which is highly valued for its conservation, is increasing significantly every year and is receiving considerable attention from the government. However, poor facilities in the forest ecotourism sites and improper market strategies are the reasons for the poor running of these sites. Furthermore, tourists' environmental awareness affects ecology environmental pollution or the optimization of forest ecotourism. In order to verify the relationships among tourist attractiveness, environmental consciousness, charm degrees of the attractions, and attitudes after tours, we established some scales based on existing research achievement. Then, using these scales, the researcher completed the questionnaire survey. From December 20, 2010 to February 20, 2011, after conducting surveys for 12 weeks, we finally obtained 582 valid questionnaires, from a total of 700 questionnaires, that could be used in statistical analysis. First, for the method of research and analysis, the researcher initially applied the Cronbach's (Alpha) for verifying the reliability, and subsequently applied the Exploratory factor analysis for verifying the validity. Second, in order to analyze the demographics, the researcher makes use of the Frequency analysis for the AMOS, measurement model, structural equation model computing, and also utilizes construct validity, convergent validity, discriminant validity, and nomological validity. Third, for the analysis of the ecotourists' environmental consciousness, impacts on tourist attractiveness, charm degrees of the attractions, and attitudes after the tour, the researcher uses AMOS 19, with the path analysis and equation of structure. After the research, researchers found that high awareness of natural protection lead to high tourist motivation and satisfaction and more positive attitude after the tour. Moreover, this research shows the psychological and behavioral reactions of the ecotourists to the ecotourist development. Accordingly, environmental consciousness does not affect the tourist attractiveness that has been interpreted as significant. Furthermore, people should focus on the change of natural protection consciousness and psychological reaction of ecotourists while ensuring the sustainable development of ecotourists and developing some ecotourist programs.

  • PDF

Alteration of Phospholipase D Activity in the Rat Tissues by Irradiation (방사선 조사에 의한 쥐 조직의 포스포리파제 D의 활성 변화)

  • Choi Myung Sun;Cho Yang Ja;Choi Myung-Un
    • Radiation Oncology Journal
    • /
    • v.15 no.3
    • /
    • pp.197-206
    • /
    • 1997
  • Purpose : Phospholipase D (PLD) catalyzes the hydrolysis of phosphatidylcholine to phosphatidic acid (PA) and choline. Recently, PLD has been drawing much attentions and considered to be associated with cancer Process since it is involved in cellular signal transduction. In this experiment, oleate-PLD activities were measured in various tissues of the living rats after whole body irradiation. Materials and Methods : The reaction mixture for the PLD assay contained $0.1\;\muCi\;1,2-di[1-^{14}C]palmitoyl$ phosphatidylcholine 0.5mM phosphatidylcholine, 5mM sodium oleate, $0.2\%$ taurodeoxycholate, 50mM HEPES buffer(pH 6.5), 10mM $CaCl_2$, and 25mM KF. phosphatidic acid, the reaction product, was separated by TLC and its radioactivity was measured with a scintillation counter. The whole body irradiation was given to the female Wistar rats via Cobalt 60 Teletherapy with field size of 10cmx loom and an exposure of 2.7Gy per minute to the total doses of 10Gy and 25Gy. Results : Among the tissues examined, PLD activity in lung was the highest one and was followed by kidney, skeletal muscle, brain, spleen, bone marrow, thymus, and liver. Upon irradiation, alteration of PLD activity was observed in thymus, spleen, lung, and bone marrow. Especially PLD activities of the spleen and thymus revealed the highest sensitivity toward $\gamma-rar$ with more than two times amplification in their activities In contrast, the PLD activity of bone marrow appears to be reduced to nearly $30\%$. Irradiation effect was hardly detected in liver which showed the lowest PLD activity. Conclusion : The PLD activities affected most sensitively by the whole-body irradiation seem to be associated with organs involved in immunity and hematopoiesis. This observation s1ron91y indicates that the PLD is closely related to the physiological function of these organs, Furthermore, radiation stress could offer an important means to explore the phenomena covering from cell Proliferation to cell death on these organs.

  • PDF

A Study on The Content of Liver Protein, Nucleic Acids, and Guanine Deaminase Activity of Mouse During Acute Starvation (급성(急性) 기아(饑餓)마우스의 간단백질(肝蛋白質), 핵산(核酸) 및 Guanine Deaminase 활성(活性)에 관(關)한 연구(硏究))

  • Park, Seung-Hee;Kim, Seung-Won
    • Journal of Nutrition and Health
    • /
    • v.1 no.2
    • /
    • pp.107-115
    • /
    • 1968
  • Number of aspects, not only nutritional but social as well as political involved in human starvation pose nowadays global problems. In order to help establish the minimum nutritional requirements in the daily life of a man and to free people as well from either undernourishment, malnutrition or even starvation many workers have devoted themselves so far on the research programs to know what and how number of metabolic events take place in animals in vivo. It is the purpose of the present paper to examine in effect to what extent both of the protein and nucleic acids (DNA & RNA) together with an enzyme, guanine deaminase, which converts guanine into xanthine and in turn ends up to uric acid as an end product, undergo changes, quantitatively during acute starvation, using the mouse as an experimental animal. The mouse was strictly inhibited from taking foods except drinking water ad libitum and was sacriflced 24, 48, and 72 hours following starvation thus acutely induced. The animals consisted of two experimental groups, one control and another starvation groups, each being consisted of 6-24 mice of whose body weights ranged in the vicinity of 10 g. The animals were sacriflced by a blow on the head, followed by immediate excision of their livers into ice-cold distilled water, washing adherent blood and other contaminant tissues. The liver was minced foramin, by an all-glass homogenizer immersing it in an ice-bath, followed by subsequent fractionatin of the homogenate (10% W/V in 0.25M sucrose solution made up with 0.05M phosphate buffer of pH 7.4). For the liver protein and guanine deaminase assay, the 10% homogenate was centrifuged at 600 x g for 10 minutes to eliminate the nuclear fraction; and for the estimation of DNA and RNA, the homogenate was prepared by the addition of 10% trichloroacetic acid in order to free the homogenate from the acid-soluble fraction, the remaining residue being delipidate by the addition of alcohol and dried in vacuo for later KOH (IN) hydrolysis. The changes in body and liver wegihts during acute starvation were checked gravimetrically. Protein contents in the liver were monitored by the method of Lowry et al; and guanine deaminase activities were followed by the assay of liberated ammonia from the substrate utilizing the Caraway's colorimetry. The extraction of both DNA and RNA was performed by the Schmidt-Thannhauser's method, which was followed by Marmur's method of purification for DNA and by Chargaff's method of purification for RNA. The determinations of both DNA and RNA were carried out by the diphenylamine reaction for the former and by the orcinol reaction for the latter. The following resume was the results of the present work. 1. It was observed that the body as well as liver weights fall abruptly during starvation, and that the loss of body weight showed no statistical correlation with the decreases in the content of liver protein. 2. The content of liver protein and activity of liver guanine deaminase activity as well decline dramatically, and the specific activities of the enzyme (activity/protein), however, decreased gradually as starvation proceeded. 3. Both of the nucleic acids, DNA and RNA, showed decrements in the liver of mouse during acute starvation; the latter, however, being more striking in the decline as compared to the former. 4. The decreases in the liver protein content as resulted from the acute starvation had no statistically significant correlation with the decrements of DNA in the same tissue, but had regressed with a significant statistical correlation with the fall of RNA in the tissue. 5. The decrease in the activity of guanine deaminase in the liver of mouse during acute starvation was functionally more proportional to the decrease in RNA than DNA, and moreover correlated with the changes in the content of the liver protein. 6. The possible mechanisms involved during in this acute starvation as bring the decreases in the contents of DNA, protein, and guanine deaminase were discussed briefly.

  • PDF

Deduction and Verification of Optimal Factors for Stent Structure and Mechanical Reaction Using Finite Element Analysis (스텐트의 구조 및 기계적인 반응에 대한 최적인자 도출과 유한요소해석법을 통한 검증)

  • Jeon, Dong-Min;Jung, Won-Gyun;Kim, Han-Ki;Kim, Sang-Ho;Shin, Il-Gyun;Jang, Hong-Seok;Suh, Tae-Suk
    • Progress in Medical Physics
    • /
    • v.21 no.2
    • /
    • pp.201-208
    • /
    • 2010
  • Recently, along with technology development of endoscopic equipment, a stent has been developed for the convenience of operation, shortening of recovery times, and reduction of patient's pain. To this end, optimal factors are simulated for the stent structure and mechanical reaction and verified using finite element analysis. In order to compare to present commercialized product such as Zilver (Cook, Bloomington, Indiana, USA) and S.M.A.R.T (Cordis, Bridgewater Towsnhip, New Jersey, USA), mechanical impact factors were determined through Taguchi factor analysis, and flexibility and expandability of all the products including ours were tested using finite element analysis. Also, important factors were sought that fulfill the optimal condition using central composition method of response surface analysis, and optimal design were carried out based on the important factors. From the centra composition method of Response surface analysis, it is found that importat factors for flexibility is stent thickness (T) and unit area (W) and those for expandability is stent thickness (T). In results, important factors for optimum condition are 0.17 mm for stent thickness (T) and $0.09\;mm^2$ for unit area (W). Determined and verified by finite element analysis in out research institute, a stent was manufactured and tested with the results of better flexibility and expandability in optimal condition compared to other products. Recently, As Finite element analysis stent mechanical property assessment for research much proceed. But time and reduce expenses research rarely stent of optimum coditions. In this research, Important factor as mechanical impact factor stent Taguchi factor analysis arrangement to find flexibility with expansibility as Finite element analysis. Also, Using to Center composition method of Response surface method appropriate optimized condition searching for important factor, these considering had design optimized. Production stent time and reduce expenses was able to do the more coincide with optimum conditions. These kind of things as application plan industry of stent development period of time and reduce expenses etc. be of help to many economic development.

Effects of rrhGM-CSF on Morphology and Expression of PCNA in Regenerating Rat Liver (재생 중인 흰쥐 간의 형태학적 변화 및 PCNA 발현에 미치는 rrhGM-CSF의 영향)

  • Jeong, Jin-Ju;Heo, Si-Hyun;Kim, Ji-Hyun;Yoon, Kwang-Ho;Lee, Young-Jun;Han, Kyu-Boem;Kim, Wan-Jong
    • Applied Microscopy
    • /
    • v.40 no.2
    • /
    • pp.73-80
    • /
    • 2010
  • Liver regeneration is a result of highly coordinated proliferation of hepatocytes and nonparenchymal liver cells. Partial hepatectomy (PH) is the most often used stimulus to study liver regeneration because, compared with other methods that use hepatic toxins, it is not associated with the tissue injury and inflammation, and the initiation of the regenerative stimulus is precisely defined. Granulocyte macrophage-colony stimulating factor (GM-CSF), which is a cytokine able to regulate the proliferation and differentiation of epithelial cells, was first identified as the most potent mitogen for bone marrow. Particularly, rrhGM-CSF, which is highly glycosylated and sustained longer than any other types of GM-CSF in the blood circulation, was specifically produced from rice cell culture. In this experiment, effects of rrhGM-CSF administration were evaluated in the regenerating liver after 78% PH of rats. Morphological changes induced by PH were characterized by destroyed hepatocyte plate around the central vein and enlarged nuclear cytoplasmic ratio and increased hepatocytes with two nuclei. And then, proliferation of liver cells (parenchymal and nonparenchymal) and rearrangement of plates and lobules seemed to be carried out during liver regeneration. These alterations in the experimental group preceded those of the control. Since proliferating cell nuclear antigen (PCNA) is known to be a nuclear protein maximally elevated in the S phase of proliferating cells, the protein was used as a marker of liver regeneration after PH in rats. PCNA levels by western blot analysis and immunohistology were compared between the two groups. PCNA protein expression of two groups at 12 hr and 24 hr after injury showed similar pattern. The protein expression showed the peak at 3 days in both groups, however, the protein level of the experimental group was higher than that of the control. On immunohistochemical observations, the reaction product of PCNA was localized at the nuclei of proliferating cells and the positive reaction in experimental group at 3 days was clearly stronger than that in control group. The results by Western blotting and immunohistology for PCNA showed similar pattern in terms of the protein levels. In conclusion, rrhGM-CSF administration during liver regeneration after 78% PH accelerated breakdown and restoration of the hepatic plate and expression of PCNA. These results suggest that rrhGM-CSF might play an important role during liver regeneration in rats.

Environmental Leachability of Electric Arc Furnace Dust for Applying as Hazardous Material Treatment (제강분진을 이용한 유해물질 처리기술 적용을 위한 안전성 평가)

  • Lee, Sang-Hoon;Kang, Sung-Ho;Kim, Jee-Hoon;Chang, Yoon-Seok
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.3
    • /
    • pp.329-336
    • /
    • 2006
  • Iron manufacturing process involves production of various by-product including slag, sludge, sintering and EAF(Electric Arc furnace dust). Some of the by-products such as EAF and sintering dust are disposed of as waste due to their high heavy metal contents. It has been notice for many years that the EAF dust also contain about 65% of Fe(0) and Fe(II) and then the possible utilization of the iron. One possibility is to apply the EAF as a lining material in conjunction with clay or HDPE liners, in waste landfill. The probable reaction between the leachate containing toxic elements such as TCE, PCE dioxine and $Cr^{6+}$ is reduction of the toxic materials in corresponding to the oxidation of the reduced iron and therefore diminishing the toxicity of the leachate. It is, however, prerequisite to evaluate the leaching characteristics of the EAF dust before application. Amelioration of the leachate would be archived only when the level of toxic elements in the treated leachate is less than that of in the untreated leachate. Several leaching techniques were selected to cover different conditions and variable environments including time, pH and contact method. The testing methods include availability test, pH-stat test and continuous column test. Cr and Zn are potentially leachable elements among the trace metals. The pH of the EAF dust is highly alkaline, recording around 12 and Zn is unlikely to be leached under the condition. On the contrary Cr is more leachable under alkaline environment. However, the released Cr should be reduced to $Cr^{3+}$ and then removed as $Cr(OH)_3$. Removal of the Cr is observed in the column test and further study on the specific reaction of Cr and EAF dust is underway.

Characteristics of Flue Gas Using Direct Combustion of VOC and Ammonia (휘발성 유기 화합물 및 암모니아 직접 연소를 통한 배기가스 특성)

  • Kim, JongSu;Choi, SeukCheun;Jeong, SooHwa;Mock, ChinSung;Kim, DooBoem
    • Clean Technology
    • /
    • v.28 no.2
    • /
    • pp.131-137
    • /
    • 2022
  • The semiconductor process currently emits various by-products and unused gases. Emissions containing pollutants are generally classified into categories such as organic, acid, alkali, thermal, and cabinet exhaust. They are discharged after treatment in an atmospheric prevention facility suitable for each exhaust type. The main components of organic exhaust are volatile organic compounds (VOC), which is a generic term for oxygen-containing hydrocarbons, sulfur-containing hydrocarbons, and volatile hydrocarbons, while the main components of alkali exhaust include ammonia and tetramethylammonium hydroxide. The purpose of this study was to determine the combustion characteristics and analyze the NOX reduction rate by maintaining a direct combustion and temperature to process organic and alkaline exhaust gases simultaneously. Acetone, isopropyl alcohol (IPA), and propylene glycol methyl ether acetate (PGMEA) were used as VOCs and ammonia was used as an alkali exhaust material. Independent and VOC-ammonia mixture combustion tests were conducted for each material. The combustion tests for the VOCs confirmed that complete combustion occurred at an equivalence ratio of 1.4. In the ammonia combustion test, the NOX concentration decreased at a lower equivalence ratio. In the co-combustion of VOC and ammonia, NO was dominant in the NOX emission while NO2 was detected at approximately 10 ppm. Overall, the concentration of nitrogen oxide decreased due to the activation of the oxidation reaction as the reaction temperature increased. On the other hand, the concentration of carbon dioxide increased. Flameless combustion with an electric heat source achieved successful combustion of VOC and ammonia. This technology is expected to have advantages in cost and compactness compared to existing organic and alkaline treatment systems applied separately.

Carbon Dioxide-based Plastic Pyrolysis for Hydrogen Production Process: Sustainable Recycling of Waste Fishing Nets (이산화탄소 기반 플라스틱 열분해 수소 생산 공정: 지속가능한 폐어망 재활용)

  • Yurim Kim;Seulgi Lee;Sungyup Jung;Jaewon Lee;Hyungtae Cho
    • Korean Chemical Engineering Research
    • /
    • v.62 no.1
    • /
    • pp.36-43
    • /
    • 2024
  • Fishing net waste (FNW) constitutes over half of all marine plastic waste and is a major contributor to the degradation of marine ecosystems. While current treatment options for FNW include incineration, landfilling, and mechanical recycling, these methods often result in low-value products and pollutant emissions. Importantly, FNWs, comprised of plastic polymers, can be converted into valuable resources like syngas and pyrolysis oil through pyrolysis. Thus, this study presents a process for generating high-purity hydrogen (H2) by catalytically pyrolyzing FNW in a CO2 environment. The proposed process comprises of three stages: First, the pretreated FNW undergoes Ni/SiO2 catalytic pyrolysis under CO2 conditions to produce syngas and pyrolysis oil. Second, the produced pyrolysis oil is incinerated and repurposed as an energy source for the pyrolysis reaction. Lastly, the syngas is transformed into high-purity H2 via the Water-Gas-Shift (WGS) reaction and Pressure Swing Adsorption (PSA). This study compares the results of the proposed process with those of traditional pyrolysis conducted under N2 conditions. Simulation results show that pyrolyzing 500 kg/h of FNW produced 2.933 kmol/h of high-purity H2 under N2 conditions and 3.605 kmol/h of high-purity H2 under CO2 conditions. Furthermore, pyrolysis under CO2 conditions improved CO production, increasing H2 output. Additionally, the CO2 emissions were reduced by 89.8% compared to N2 conditions due to the capture and utilization of CO2 released during the process. Therefore, the proposed process under CO2 conditions can efficiently recycle FNW and generate eco-friendly hydrogen product.