• Title/Summary/Keyword: Reaction modulus

Search Result 239, Processing Time 0.04 seconds

Evaluation of Subgrade Stiffness using Pressuremeter Test (공내재하시험에 의한 포장하부기초 강성도 평가)

  • Lim, Yu-Jin;Hai, Nguyen Tien;Jang, Duk-Sun
    • International Journal of Highway Engineering
    • /
    • v.6 no.2 s.20
    • /
    • pp.25-36
    • /
    • 2004
  • The pressuremeter test can be used as an effective tool for evaluating stiffness of lower pavement layers including subgrade and subbase. At present, the most practical and applicable methods for evaluation of the stiffness of the subgrade and subbase are PBT and CBR in Korea. However, these methods have inherent drawbacks and large variabilities of test results themselves. In this study, an evaluation method and a test procedure that can be used for decision of pavement stiffness using pressuremeter were developed. The obtained results representing stiffness of the subgrade and subbase can replace PBT's soil reaction value k and CBR in design methods. It is found that the developed procedure based on the pressuremeter can provide an effective correaltion between the PBT's soil reaction value k and PMT's reloading modulus ($E_R$).

  • PDF

Effect of 1,6-Hexamethylenediamine Content on the Properties/Adhesive Strength of EVA/Itaconated EPDM Blend Foams (I) (헥사메텔렌 디아민이 EVA/Itaconated EPDM 블렌드 발포체의 물성 및 접착강도에 미치는 영향 (I))

  • Jung, Hyun-Ji;Lee, Young-Hee;Kim, Jung-Soo;Lee, Dong-Jin;Kim, Sung Yeol
    • Textile Coloration and Finishing
    • /
    • v.30 no.2
    • /
    • pp.107-116
    • /
    • 2018
  • Simplification of the manufacturing process in shoe making is essential to improve productivity and reduce production costs. To improve the adhesion of EVA foam used as a midsole, EVA/itaconated EPDM(EPDM-g-IA)(80/20wt%) blend was prepared using Torque Rheometer-Plasti-Corder, and 1,6-hexamethylenediamine/crosslinking agent/foaming agent/additive were mixed, followed by amidation reaction and foaming to prepare EVA/EPDM-g-IA foam for shoe midsole. In this study, we investigate the effect of the content of 1,6-hexamethylenediamine(0, 0.5, 1.0, 2.0, 3.0) on the mechanical properties, water-contact angle and adhesion of EVA/itaconated EPDM foam. As the content of 1,6-hexamethylenediamine increased, mechanical properties such as tensile strength, tear strength, tensile elastic modulus, hardness, and water-contact angle were lowered, but elongation at break and compression set(%) were increased. Both normal type and non-UV type adhesive strength increased with increasing diamine content. In particular, it was found that the adhesion strength of the non-UV type adhesion increased sharply with increasing diamine content. As a result, an adherend rupture occurs in a foam sample having a content of 1,6-hexamethylenediamine of 3phr. From this, it can be seen that the EVA/itaconated EPDM foam for shoe midsoles, which can be used for non-UV adhesion without primer and UV treatments, have been developed.

A Pd Doped PVDF Hollow Fibre for the Dissolved Oxygen Removal Process

  • Batbieri G.;Brunetti A.;Scura F.;Lentini F.;Agostino R G.;Kim, M.J.;Formoso V.;Drioli E.;Lee, K.H.
    • Korean Membrane Journal
    • /
    • v.8 no.1
    • /
    • pp.1-12
    • /
    • 2006
  • In semiconductor industries, dissolved oxygen is one of the most undesirable contaminants of ultrapure water. A method for dissolved oxygen removal (DOR) consists in the use of polymeric hollow fibres, loaded with a catalyst and fed with a reducing agent such as hydrogen. In this work, PVDF hollow fibres loaded with Pd were characterized by means of perporometry, scanning electron microscopy (SEM), energy dispersive X-ray (EDX). The hollow fibre analyzed shows a five-layer structure with remarkable morphological differences. An estimation of pore diameters and their distribution was performed giving a mean pore diameter of 100 nm. The permeance and selectivity of the fibres were measured using $H_2,\;N_2,\;O_2$ as single gases, at different operating conditions. An $H_2$ permeance of $37 mmol/m^2s$ was measured and $H_2/O_2$ and $H_2/N_2$ selectivities of ca. 3 were obtained. $H_2$ permeance was 1/3 when a water stream flows in the shell side. Catalytic fibrebehaviour was simulated using a mathematical model for a loop membrane reactor, considering only $O_2$ and $H_2$ diffusive transport inside the membrane and their catalytic reaction. Dimensionless parameters such as the Thiele modulus are employed to describe the system behaviour. The model agrees well with the experimental reaction data.

Mechanical Properties and Morphology of Polyamide 6/Maleated Polypropylene Blends (폴리아미드6/반응성 폴리프로필렌(PA6/PP-g-MA) 블렌드의 기계적 특성과 모폴로지)

  • Koh, Jae Song;Jang, Yoon Ho
    • Applied Chemistry for Engineering
    • /
    • v.10 no.8
    • /
    • pp.1136-1140
    • /
    • 1999
  • Melt blends of polymide 6(PA6) and polypropylene grafted maleic anhydride(PP-g-MA) were prepared to study the influence of chemical reaction between the two polymer components. The tensile, flexural, izod impact, dynamic mechanical properties and phase structure were investigated for this blend system. Tensile strength and modulus of the blends showed synergetic effect upon blending of two polymer components. Flexural properties maintained the value of numerical mean calculated from the weight ratio of two components. Also, notched izod impact strengths showed maximum in th PA6/PP-g-MA 50/50 wt % blend. From the change of tan ${\delta}$ observed, we confirmed the increase of miscibility in this blend system by chemical reaction between PA6 and PP-g-MA. Blends of good impact resistance could be obtained when the PP-g-MA particles of $2{\mu}m$ was dispersed in the PA6 matrix.

  • PDF

Studies on the Crosslinking Density and Reinforcement of Rubber Compounds by Cure System (가황조건별 배합고무의 가교밀도와 고무보강성에 관한 연구)

  • Park, Nam-Cook;Lee, Seog
    • Elastomers and Composites
    • /
    • v.33 no.5
    • /
    • pp.315-323
    • /
    • 1998
  • The purpose of this study was to investigate the crosslinking density and reinforcement of rubber compounds with various carbon black loadings, cure systems and cure temperatures. Bound rubber content increased with volume fraction of carbon black in rubber compounds, but total crosslinking density decreased with increasing the bound rubber content. Rate constant of cure reaction was changed significantly by cure system and cure temperature, especially it showed strong dependence on the cure temperature. High activation energys of cure reaction were shown in the rubber compound with high loading of carbon black under EC system and in the rubber compound with low loading of carbon black under CC system. High total crosslinking density of vulcanized compounds appeared in the rubber compound with low loading of carbon black and CC system among cure systems. Typical change of total crosslinking density by EC system was not shown. The highest elastic constant by Mooney-Rivlin equation was shown in the rubber compound with low loading of carbon black and SEC system. Modulus increased as increasing the loading of carbon black in the rubber compounds and showed the order of SEC, CC, and EC system for cure system.

  • PDF

Sequential Analysis of Earth Retaining Structures Using p-y Curves for Subgrade Reaction

  • Kim, Hwang;Cha
    • Geotechnical Engineering
    • /
    • v.12 no.3
    • /
    • pp.149-164
    • /
    • 1996
  • The sequential behavior of earth retaining structure is investigated by using soil springs in elasto -plastic soil. Mathematical model that can be used to construct the p-y curves for subgrade modulus is proposed by using piecewise linear function. The excavation sequence of retaining wall is analyzed by the beam -column method. Reliability on the developed computer program is verfied through the comparison between the prediction and the in -situ measuidments. It is concluded that the proposed method simulates well the construction sequence and thus represents a significant improvement in the prediction of deflections of anchored wall excavation. Based on the results the proposed method can be effectively used for the evaluation of the relative importance of the parameters employed in a sensitivity analysis.

  • PDF

Effects of Imperfect Fixing at the Active End of Spring-top Resonant Column Apparatus (주동단에 반력으프링이 부착된 공진우 시험기에서 우동단 불완전 고정의 영향)

  • 민덕기
    • Geotechnical Engineering
    • /
    • v.6 no.1
    • /
    • pp.7-14
    • /
    • 1990
  • The two degree of freedom model is proposed to study the effects of imperfect fixing at the active end of spring-top resonant column apparatus. A computer program using the SYMPHONY spreadsheet is developed to calculate the dimensionless frequency, F, from which modulug can be determined. It is found that the effect of reaction mass through the parameter Tr on dimensionless frequency, F, can not be ignored if Tr$\leq$20. As To increases, the variation of F increases. But for Tr$\geq$ 20, the effect of To becomes small. It is recommended that T. be greater than 20 if single degree of freedom model is rosed to determine modulus of soil. It also is found that damping ratios of specimen and apparatus do not strongly affect the dimensionless frequency, F.

  • PDF

Non-linear analysis of pile groups subjected to lateral loads using 'p-y' curve

  • Chore, H.S.;Ingle, R.K.;Sawant, V.A.
    • Interaction and multiscale mechanics
    • /
    • v.5 no.1
    • /
    • pp.57-73
    • /
    • 2012
  • The paper presents the analysis of two groups of piles subjected to lateral loads incorporating the non-linear behaviour of soil. The finite element method is adopted for carrying out the parametric study of the pile groups. The pile is idealized as a one dimensional beam element, the pile cap as two dimensional plate elements and the soil as non-linear elastic springs using the p-y curves developed by Georgiadis et al. (1992). Two groups of piles, embedded in a cohesive soil, involving two and three piles in series and parallel arrangement thereof are considered. The response of the pile groups is found to be significantly affected by the parameters such as the spacing between the piles, the number of piles in a group and the orientation of the lateral load. The non-linear response of the system is, further, compared with the one by Chore et al. (2012) obtained by the analysis of a system to the present one, except that the soil is assumed to be linear elastic. From the comparison, it is observed that the non-linearity of soil is found to increase the top displacement of the pile group in the range of 66.4%-145.6%, while decreasing the fixed moments in the range of 2% to 20% and the positive moments in the range of 54% to 57%.

Soil-structure interaction effects on seismic behavior of a hyperbolic cooling tower using three-parameter Vlasov foundation model

  • Karakas, Ali I.;Ozgan, Korhan;Daloglu, Ayse T.
    • Earthquakes and Structures
    • /
    • v.14 no.1
    • /
    • pp.85-94
    • /
    • 2018
  • The paper focuses on the seismic responses of a hyperbolic cooling tower resting on soil foundation represented by the three-parameter Vlasov elastic soil model. The three-parameter soil model eliminates the necessity of field testing to determine soil parameters such as reaction modulus and shear parameter. These parameters are calculated using an iterative procedure depending on the soil surface vertical deformation profile in the model. The soil and tower system are modeled in SAP2000 structural analysis program using a computing tool coded in MATLAB. The tool provides a two-way data transfer between SAP2000 and MATLAB with the help of Open Application Programming Interface (OAPI) feature of SAP2000. The response spectrum analyses of the tower system with circular V-shaped supporting columns and annular raft foundation on elastic soil are conducted thanks to the coded tool. The shell and column forces and displacements are presented for different soil conditions and fixed raft base condition to investigate the effects of soil-structure interaction. Numerical results indicate that the flexibility of soil foundation leads to an increase in displacements but a decrease in shell membrane and column forces. Therefore, it can be stated that the consideration of soil-structure interaction in the seismic response analysis of the cooling tower system provides an economical design process.

Thin Film Encapsulation with Organic-Inorganic Nano Laminate using Molecular Layer Deposition and Atomic Layer Deposition

  • Yun, Gwan-Hyeok;Jo, Bo-Ram;Bang, Ji-Hong;Seong, Myeong-Mo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.270-270
    • /
    • 2016
  • We fabricated an organic-inorganic nano laminated encapsulation layer using molecular layer deposition (MLD) combined with atomic layer deposition (ALD). The $Al_2O_3$ inorganic layers as an effective single encapsulation layer were deposited at 80 degree C using ALD with alternating surface-saturation reactions of TMA and $H_2O$. A self-assembled organic layers (SAOLs) were fabricated at the same temperature using MLD. MLD and ALD deposition process were performed in the same reaction chamber. The prepared SAOL-$Al_2O_3$ organic-inorganic nano laminate films exhibited good mechanical stability and excellent encapsulation property. The measurement of water vapor transmission rate (WVTR) was performed with Ca test. We controlled thickness-ratio of organic and inorganic layer, and specific ratio showed a lowest WVTR value. Also this encapsulation layer contained very few pin-holes or defects which were linked in whole area by defect test. To apply into real OLEDs panels, we controlled a film stress from tensile to compressive and flexibility defined as an elastic modulus with organic-inorganic ratio. It has shown that OLEDs panel encapsulated with nano laminate layer exhibits better properties than single layer encapsulated in acceleration conditions. These results indicate that the organic-inorganic nano laminate thin films have high potential for flexible display applications.

  • PDF