• Title/Summary/Keyword: Reaction model

Search Result 2,854, Processing Time 0.031 seconds

An experimental study on attitude control of spacecraft using roaction wheel (반작용 휠을 이용한 인공위성 지상 자세제어 실험 연구)

  • 한정엽;박영웅;황보한
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1334-1337
    • /
    • 1997
  • A spacecraft attitude control ground hardware simulator development is discussed in the paper. The simulator is called KT/KARI HILSSAT(Hardware-In-the Loop Simulator Single Axis Testbed), and the main structure consists of a single axis bearing and a satellite main body model on the bearing. The single axis tabel as ans experimental hardware simulator that evaluates performance and applicability of a satellite before evolving and/or confirming a mew or and old control logic used in the KOREASAT is developed. Attitude control of spaceraft by using reaction wheel is performed.

  • PDF

A simulation of steady and dynamic states of methanol reforming reaction (메탄올 개질반응의 정상 및 동특성 모사)

  • 김경미;최영순;송형근
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1989.10a
    • /
    • pp.395-398
    • /
    • 1989
  • A two dimensional pseudo-homogeneous model for the methanol reforming reaction was developed and its steady and dynamic states were studied by a computer simulation. The reactor tube diameter, the catalyst density in the fixed bed, the feed flow rate, the feed temperature and the external temperature were chosen to be adjusted to determine the length of the reactor. The dynamics of the reactor showed that the system was highly nonlinear and sensitive to the feed disturbances.

  • PDF

NUMERICAL STUDY OF STREAM REFORMING IN PRECONVERTER FOR MCFC (MCFC용 프리컨버터 수증기 개질반응의 수치연구)

  • Byun, Do-Hyun;Sohn, Chang-Hyun
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2010.05a
    • /
    • pp.228-232
    • /
    • 2010
  • In this paper, various operating parameters of stream reforming process from methane in preconverter for MCFC is studied by numerical method. Commercial code is used to simulated the porous catalyst with user subroutine to model three dominant chemical reactions which are Stream Reforming(SR), Water-Gas Shift(WGS), and Direct Stram Reforming(DSR). The hydrogen production is tested with different wall temperature, Gas Hourly Space Velocity(GHSV), and different reactor shapes.

  • PDF

Reactions in Surfactant Solutions(V): Dephosphorylation of p-Nitrophenyldiphenylphosphinate by Benzimidazole Catalyzed with Ethyltri-n-octylammonium Bromide

  • 홍영석;이정근;김현묵
    • Bulletin of the Korean Chemical Society
    • /
    • v.18 no.12
    • /
    • pp.1260-1264
    • /
    • 1997
  • The phase-transfer reagent (PTC), ethyl tri-n-octylammonium bromide (ETABr), strongly catalyzes the reaction of p-nitrophenyldiphenylphosphinate (p-NPDPIN) with benzimidazole (BI) and its anion (BI-). In ETABr solutions, the dephosphorylation reactions exhibit higer than first order kinetics with respect to the nucleophile, BI, and ETABr, suggesting that reactions are occuring in small aggregates of the three species including the substrate, whereas the reaction of p-NPDPIN with OH- is not catalyzed by ETABr. This behavior for the drastic rate-enhancement of the dephosphorylation is refered as 'aggregation complex model' for reactions of hydrophobic organic phosphinates with benzimidazole in hydrophobic quarternary ammonium salt solutions.

Evaluation of Microcanonical Rate Constants by Semiclassical Boundary Conditions : Early Asymptotic Analysis

  • Sungyul Lee
    • Bulletin of the Korean Chemical Society
    • /
    • v.13 no.5
    • /
    • pp.538-541
    • /
    • 1992
  • An approximate scheme for evaluating total reaction probability is proposed. Semiclassical boundary conditions are imposed well before the asymptotic region in the reactant and product channels to calculate the Green's function and its derivatives. Propagations are confined to a limited regime near the activated complex. Calculations are made for one dimensional Eckart barrier model of H + $H_2$ reaction. Implications of the procedure in multi-dimensional systems are discussed.

The Photoaddition Reaction of 1,4-Diphenyl-1,3-butadiyne with 5-Fluorouracil

  • Shim, Sang-Chul;Lee, Tae-Suk;Kim, Sung-Sik
    • Bulletin of the Korean Chemical Society
    • /
    • v.7 no.3
    • /
    • pp.228-230
    • /
    • 1986
  • Diacetylene compound, 1,4-diphenyl-1,3-butadiyne, was photolyzed with 5-fluorouracil as a model reaction of the phototoxic conjugated poly-ynes with DNA or RNA and obtained a [2 + 2] photocycloadduct. The structure of the photoadduct was determined by spectral methods and compared with the [2 + 2] photoadducts of 1,4-diphenyl-1,3-butadiyne with tetramethylethylene and dimethyl fumarate.

2D-QSAR and HQSAR Analysis on the Herbicidal Activity and Reactivity of New O,O-dialkyl-1-phenoxy-acetoxy-1-methylphosphonate Analogues (새로운 O,O-dialkyl-1-phenoxyacetoxy-1-methylphosphonate 유도체들의 반응성과 제초활성에 관한 2D-QSAR 및 HQSAR 분석)

  • Sung, Nack-Do;Jang, Seok-Chan;Hwang, Tae-Yeon
    • The Korean Journal of Pesticide Science
    • /
    • v.11 no.2
    • /
    • pp.72-81
    • /
    • 2007
  • Quantitative structure-activity relationships (QSARs) on the pre-emergency herbicidal activity and reactivity of a series of new O,O-dialkyl-1-phenoxyacetoxy-1-methylphosphonates (S) analogues against seed of cucumber (Cucumus Sativa) were discussed quantitatively using 2D-QSAR and HQSAR methods. The statistical values of HQSAR model were better than that of 2D-QSAR model. From the frontier molecular orbital (FMO) interaction between substrate molecule (S) and $BH^+$ ion (I) in PDH enzyme, the electrophilic reaction was superior in reactivity. From the effect of substituents, $R_2$-groups in substrate molecule (S) contributed to electrophilic reaction with carbonyl oxygen atom while X, Y-groups contributed to nucleophilic reaction with carbonyl carbon atom. And the influence of X,Y-groups was more effective than that of $R_2$-groups. As a results of 2D-QSAR model (I & II) and atomic contribution maps with HQSAR model, the more length of X, Y-groups is longer, the more herbicidal activity tends to increased. And also, the optimal ${\epsilon}LUMO$ energy, $({\epsilon}LUMO)_{opt.}$=-0.479 (e.v.) of substrate molecule is important factor in determining the herbicidal activity. It is predicted that the herbicidal activity proceeds through a nucleophilic reaction. From the analytical results of 2D-QSAR and HQSAR model, it is suggested that the structural distinctions and descriptors that contribute to herbicidal activities will be able to applied new herbicide design.

Preparation of Waste Cooking Oil-based Biodiesel Using Microwave Energy: Optimization by Box-Behnken Design Model (마이크로웨이브 에너지를 이용한 폐식용유 원료 바이오디젤의 제조: Box-Behnken 설계를 이용한 최적화)

  • Lee, Seung Bum;Jang, Hyun Sik;Yoo, Bong-Ho
    • Applied Chemistry for Engineering
    • /
    • v.29 no.6
    • /
    • pp.746-752
    • /
    • 2018
  • In this study, an optimized process for the waste cooking oil based biodiesel production using microwave energy was designed by using Box-Behnken design model. The process variables were chosen as a mole ratio of the methanol to oil, microwave power, and reaction time. Fatty acid methyl ester (FAME) content was then measured. Through the results of basic experiments, the range of optimum operation variables for the Box-Behnken design model, such as the methanol/oil mole ratio and reaction time, were set as between 8 to 10 and between 4 to 6 min, respectively. Ranges of the microwave power were set as from 8 to 12 W/g for 1.30 mg of KOH/g, acid value, while from 10 to 14 W/g for 2.00 mg of KOH/g, acid value. The optimum methanol/oil mole ratio, microwave power, and reaction time were reduced to 7.58, 10.26 W/g, and 5.1 min, respectively, for 1.30 mg KOH/g of acid value. Also, the optimum methanol/oil mole ratio, microwave power, and reaction time were 7.78, 12.18 W/g, and 5.1 min, respectively, for 2.00 mg KOH/g of acid value. Predicted FAME contents were 98.4% and 96.3%, with error rates of less than 0.3%. Therefore, when the optimized process of biodiesel production using microwave energy was applied to the Box-Behnken design model, the low error rate could be obtained.

Numerical and Experimental Analyses Examining Ozone and Limonene Distributions in Test Chamber with Various Turbulent Flow Fields

  • ITO, Kazuhide
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.16 no.3
    • /
    • pp.89-99
    • /
    • 2008
  • Indoor ozone has received attention because of its well-documented adverse effects on health. In addition to the inherently harmful effects of ozone, it can also initiate a series of reactions that generate potentially irritating oxidation products, including free radicals, aldehydes, organic acids and secondary organic aerosols (SOA). Especially, ozone reacts actively with terpene. The overarching goal of this work was to better understand ozone and terpene distributions within rooms. Towards this end, the paper has two parts. The first describes the development of a cylindrical test chamber that can be used to obtain the second order rate constant $(k_b)$ for the bi-molecular chemical reaction of ozone and terpene in the air phase. The second consists of model room experiments coupled with Computational Fluid Dynamics (CFD) analysis of the experimental scenarios to obtain ozone and terpene distributions in various turbulent flow fields. The results of CFD predictions were in reasonable agreement with the experimental measurements.

Theoretical Analysis on the Synthesis of Ultrafine TiO2 Particles by Combustion Reaction (연소반응을 이용한 TiO2 초미립자 제조 공정에 대한 이론적 연구)

  • Chae, Bum-San;Kim, Kyo-Seon
    • Journal of Industrial Technology
    • /
    • v.17
    • /
    • pp.241-247
    • /
    • 1997
  • A numerical model has been proposed for a diffusion flame reactor to manufacture ultrafine $TiO_2$ powders. The model equations such as mass balance equation, the 0th, 1st, and 2nd moment equations of aerosols were considered. The phenomena such as $TiCl_4$ reaction rate, $TiO_2$ nucleation rate and the coagulation of $TiO_2$ powders were included in the aerosol dynamic equation. It is found that the $TiO_2$ particle concentration becomes higher, as the inlet $TiCl_4$ concentration and the total gas flow rate increase, and also as the flame temperature decreases. The $TiO_2$ particle size increases, as the flame temperature and the inlet $TiCl_4$ concentration increase and the total gas flow rate decreases.

  • PDF