• Title/Summary/Keyword: Reaction enthalpy

Search Result 157, Processing Time 0.023 seconds

Photocatalytic Property of Nano-Structured TiO$_2$ Thermal Splayed Coating - Part I: TiO$_2$ Coating - (나노구조 TiO$_2$ 용사코팅의 미세조직 제어 공정기술 개발과 광촉매 특성평가 - Part I: TiO$_2$코팅 -)

  • 이창훈;최한신;이창희;김형준;신동우
    • Journal of Welding and Joining
    • /
    • v.21 no.4
    • /
    • pp.39-45
    • /
    • 2003
  • Nano-TiO$_2$ photocatalytic coatings were deposited on the stainless steel 304(50$\times$70$\times$3mm) by the APS(Atmospheric Plasma Spraying). Photocatlytic reaction was tested in MB(methylene blue) aqueous solution. For applying nano-TiO$_2$ powders by thermal spray, the starting nano-TiO$_2$ powder with 100% anatase crystalline was agglomerated by spray drying. Plasma second gas(H$_2$) flow rate and spraying distance were used as principal process parameters which are known to control heat enthalpy(heat input). The relationship between process parameters and the characteristics of microstructure such as the anatase phase fraction and grain size of the TiO$_2$ coatings were investigated. The photo-decomposition efficiency of TiO$_2$ coatings was evaluated by the kinetics of MB aqueous solution decomposition. It was found that the TiO$_2$ coating with a lower heat input condition had a higher anatase fraction, smaller anatase grain size and a better photo-decomposition efficiency.

Adhesion Properties of Urea-Melamine-Formaldehyde (UMF) Resin with Different Molar Ratios in Bonding High and Low Moisture Content Veneers

  • Xu, Guang-Zhu;Eom, Young-Geun;Lim, Dong-Hyuk;Lee, Byoung-Ho;Kim, Hyun-Joong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.38 no.2
    • /
    • pp.117-123
    • /
    • 2010
  • The objective of this research was executed to investigate the effect of molar ratio of formaldehyde to urea and melamine (F/(U+M)) of urea-melamine-formaldehyde (UMF) resin on bonding high and low moisture content veneers. For that purpose, UMF resin types with 5 different F/(U+M) molar ratios (1.45, 1.65, 1.85, 2.05, and 2.25) synthesized were used in present study. First, their curing behavior was evaluated by differential scanning calorimetry. Second, their adhesion performance in bonding high and low moisture content veneers was evaluated by probe tack and dry and wet shear strength tests. Curing temperature and reaction enthalpy decreased with the increase of F/(U+M) molar ratio. And the dry and wet shear strengthsof plywood manufactured from low moisture content veneers were higher than thoseof plywood manufactured from high moisture content veneers. Also, the maximum initial tack force on the low moisture content veneer was higher than that on the high moisture content veneer.

Numerical Study of Thermal Choking Process in a Model SCRamjet Combustor (모델 스크램제트 연소기 내의 열적 질식 과정 수치 연구)

  • Lee, B.R.;Moon, G.W.;Jeung, I.S.;Choi, J.Y.
    • 한국연소학회:학술대회논문집
    • /
    • 2000.12a
    • /
    • pp.83-91
    • /
    • 2000
  • A numerical study was carried out to investigate the 'unstart' process of thermally-choked combustion in model scramjet engines. The combustion mechanism of supersonic combustor will be compared with the experimental results obtained from the T3 free-piston shock tunnel at ANU (Australian National University) and the high enthalpy supersonic wind tunnel at UT (University of Tokyo). For the numerical simulation of supersonic combustion. multi-species Navier-Stokes equations were considered. and detailed chemistry reaction mechanism of $H_2$-Air were adopted. The governing equations were solved by Roe's FDS method and LU-SGS method with MUSCL scheme. In this study. it is found that the thermal choking process could result from excessive heat release due to combustion. In detail, sufficient heat release could be generated at local region of very high temperature increased by reflection of shock waves or vortex sheets. Accordingly the flow of downstream of the combustor fell to subsonic field propagated upstream along the combustor. Sometimes the subsonic flow field propagated into isolator could generate precombustion shock waves in the isolator.

  • PDF

Effect of Grafted Polypropylene on the Mechanical Properties of Polypropylene/Nylon 66 Blends (그라프트된 폴리프로필렌이 폴리프로필렌/나이론 66 블랜드의 물성에 미치는 영향)

  • Han, Kyung-Yoon;Ahn, Sung-Hwan;Chung, Kwang-Bo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.28 no.4
    • /
    • pp.402-409
    • /
    • 2011
  • Compatibility and properties of PP/N66 blends with or without PP-g-MAH as a compatibilizer were investigated by DSC, SEM and universal testing machine. Morphological studies revealed that PP and N66 were incompatible and addition of PP-g-MAH was very effective to enhance the compatibility between PP and N66. The compatibilization effect between N66 and PP-g-MAH was based on the reaction between the amine end group of N66 and anhydride group in PP-g-MAH. The crystallization and melting behavior of PP/N66 blends were investigated and the results of analyses for enthalpy changed were discussed. The Izod impact strength could be improved by optimizing the compatibilizer concentration. Tensile strength, elongation at break, notched Izod impact strength were increased with using compatibilizer, however, both the compatibilized and the noncompatibilizer blends did not show any big difference in the flexural modulus.

Adsorption Characteristics of Methylene Blue and Phenol from Aqueous Solution using Coal-based Activated Carbon (석탄계 활성탄에 의한 수중의 메틸렌블루와 페놀 흡착 특성)

  • Lee, Song-Woo;Kam, Sang-Kyu;Lee, Min-Gyu
    • Journal of Environmental Science International
    • /
    • v.22 no.9
    • /
    • pp.1161-1170
    • /
    • 2013
  • The efficiency of coal-based activated carbon in removing methylene blue (MB) and phenol from aqueous solution was investigated in batch experiments. The batch adsorption kinetics were described by applying pseudo-first-order, pseudo-second-order, and first order reversible reaction. The results showed that the adsorption of MB and phenol occurs complexed process including external mass transfer and intraparticle diffusion. The maximum adsorption capacity obtained from Langmuir isotherm was 461.0 mg/g for MB and 194.6 mg/g for phenol, respectively. The values of activation parameters such as free energy (${\Delta}G^0$), enthalpy (${\Delta}H^0$), and entropy (${\Delta}S^0$) were also determined as -19.0~-14.9 kJ/mol, 25.4 kJ/mol, and 135.2 J/mol K for MB and 51.8~54.1 kJ/mol, -29.0 kJ/mol, and -76.4 kJ/mol K for phenol, respectively. The MB adsorption was found to be endothermic and spontaneous process. However, the CV adsorption was found to be exothermic and non-spontaneous process.

Preheated Air Combustion Characteristics of Partially Premixed Flame (부분 예혼합 화염의 예열공기 연소특성)

  • Lee, Seung-Young;Lee, Jong-Ho;Jeon, Chung-Hwan;Chang, Young-June
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.65-70
    • /
    • 2001
  • OH radical and NOx have been measured in a methane-air partially premixed flame using PLIF technique to define preheated air combustion characteristics. The temperature of mixture is determined by 300K, 400K, 600K and 800K below the auto-ignition temperature respectively. Flame height increases as equivalence ratio increased. As initial enthalpy is supplied, the radius of flame was increased and much amount of yellow flame in rich equivalence ratio was observed. This is due to the faster burning velocity. Also initial oxidization begins earlier as the initial temperature of mixture increased. It means that height of premixed flame front decreased. This phenomenon can be observed OH PLIF image. The qualitative analysis of OH concentration in the PLIF image shows that overall OH concentration increases with equivalence ratio and the initial temperature of mixture increased. At the preheating temperature goes up, axial gradient of OH concentration is less steep than that of lower temperature condition. This may identify that combustion reacts continuously, so preheated air combustion can evade the local heating and make high temperature indiscriminately in the overall reaction zone.

  • PDF

Effect of Scale and Geometry on the Performance of Heat-Recirculating Swiss roll combustors for Micro Power Generation Applications (마이크로 동력발생용 소형 스위스롤 연소기의 크기와 형상 효과에 대한 연구)

  • Oh, Hwa-Young;Huh, Hwan-Il;Ronney, Paul D.
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.15 no.1
    • /
    • pp.1-10
    • /
    • 2011
  • Combustion and extinction limits in heat-recirculating excess enthalpy reactors employing both gas-phase and catalytic reaction have been examined with an emphasis Reynolds number (Re) effects and possible application to microscale combustion devices. In this paper, geometrically similar reactors of different physical sizes and different numbers of turns were tested with the aim of estimating for combustor characteristics. Combustion efficiency is estimated by measuring exhausted gases through the gas chromatograph. From these results the effect of scale and number of turns are demonstrated and optimal operating conditions for Swiss roll combustors are identified.

Predictions on the Flame Structure and Soot Distribution in the Coflowing Laminar Diffusion Flames (동층류 축대칭 확산화염내의 화염구조 및 매연입자 분포의 예측)

  • 이정기;김상수
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.8
    • /
    • pp.1583-1594
    • /
    • 1992
  • A numerical calculation on the flame structure and soot particle distribution in a coannular laminar diffusion flame was performed. Flame analysis model utilized basically flame sheet concepts, Shvab-Zel'dovich assumption, and one step overall irreversible reaction. It was also considered the variation of thermodynamics and transport properties, and the stagnation enthalpy was used for solving temperature field. Radiation was taken into account, since it has been found to be important in determining the flame temperature in sooty flames. For soot particle analysis, we adopted the coagulation, suface condensation, and the oxidation model in addition to tesner's two-step formation model. Equations for primary soot particle excluding the agglomeration process were solved. Based on the results, the regions of soot generation, growth, and oxidation in the flame have been observed and radiation strongly influenced flame temperature and soot distribution.

Study on Basic Characteristics of Natural Gas Autothermal Reformer for Fuel Cell Applications (연료전지용 천연가스 자열개질기의 기초특성 연구)

  • Lim, Sung-Kwang;Nam, Suk-Woo;Bae, Joong-Myeon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.9 s.252
    • /
    • pp.850-857
    • /
    • 2006
  • Hydrogen production using current fueling facilities is essential for near-term applications of fuel cells. A preliminary process for developing a natural gas autothermal reforming (ATR) reactor for fuel cells is presented in this paper. A experimental reactor for methane ATR was constructed and used for characterization of Jin reactor. Temperature profiles of the reactor were observed, and reformed gas compositions were analyzed to evaluate efficiency, conversion and reaction heat with varying amounts of $O_2/CH_4$ at selected furnace temperature and $H_2O/CH_4$. The amount of $O_2/CH_4$ showed strong offsets on reactor temperature, efficiency and conversion indicating that $O_2/CH_4$ is a crucial operation condition. Operation conditions which result in thermal neutrality of ATR reactor system were determined for two cases of an ATR system based on the estimation of enthalpy difference between reactants of assumed inlet temperatures and the products from experimental results. The determined conditions for thermally neutral operations could be used for guidelines to design reformers and for determining the operation parameters of a self sustaining ATR reactor.

CO2 Solubilities in Amide-based Brønsted Acidic Ionic Liquids

  • Palgunadi, Jelliarko;Im, Jin-Kyu;Kang, Je-Eun;Kim, Hoon-Sik;Cheong, Min-Serk
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.1
    • /
    • pp.146-150
    • /
    • 2010
  • A distinguished class of hydrophobic ionic liquids bearing a Br${\o}$nsted acidic character derived from amide-like compounds were prepared by a neutralization reaction of N,N-diethylformamide, N,N-dibutylformamide, 1-formylpiperidine, and $\varepsilon$-caprolactam with trifluoroacetic acid and physical absorptions of $CO_2$ in these ionic liquids were demonstrated and evaluated. $CO_2$ solubilities in these ionic liquids were influenced by the molecular structure of the cation and were apparently increased with the molar volume. Comparison based on a volume unit reveals that $CO_2$ solubilities in these liquids are relatively higher than those in imidazolium-based ionic liquids. Henry's coefficients calculated from low-pressure solubility tests at 313 to 333 K were used to derive the thermodynamics quantities. Enthalpy and entropy of solvation may share equal contributions in solubility.