• Title/Summary/Keyword: Reaction enthalpy

Search Result 157, Processing Time 0.025 seconds

The effect of Pd film evaporation condition on the kinetics of hydrogen absorption-desorption (Pd 박막 시료의 제작 조건이 수소 흡수-방출 동역학에 미치는 영향에 관한 연구)

  • Um, Dae-hyun;Yoo, Joung-gouk;Cho, Young-sin
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.9 no.3
    • /
    • pp.127-133
    • /
    • 1998
  • This study was conducted to know to the effect of Pd film($180{\AA}$ thick) evaporation condition on the kinetics of hydrogen absorption-desorption. The activation energy of the forward reaction, the activation energy of the backward reaction, and the enthalpy were calculated by hydrogen absorption-desorption in ${\alpha}$-phase.($25{\sim}50^{\circ}C$ temperature) The activation energy of the forward reaction of Pd film, which is made at room temperature, is $6.4{\pm}0.4$ kcal/mol H and of the backward reaction $8.4{\pm}1.5$ kcal/mol H, which yields the reaction enthalpy -2kcal/mol H. The activation energy of forward reaction of Pd film, which is made at $300^{\circ}C$, is $-0.18{\pm}0.61$ kcal/mol H and of the backward reaction $-0.17{\pm}2.3$ kcal/mol H. The sample of $300^{\circ}C$ is more stable than the sample of room temperature in its struciural compactness and resistance value but standard error of result of $300^{\circ}C$ sample is higher than sample of room temperature do.

  • PDF

Structural and Thermal Characteristics of Synthesized SiC by Carbothermal Reaction and Sol-gel Method (Carbothermal 반응법과 졸-겔법에 의해 합성된 SiC의 구조적 특성과 열역학적 특성)

  • Oh, Won-Chun;Kim, Bum-Soo
    • Analytical Science and Technology
    • /
    • v.11 no.3
    • /
    • pp.156-160
    • /
    • 1998
  • SiC is synthesized by sol-gel and carbothermal reaction method from various carbon sources and Si source and characterized through the results of DSC and XRD. More SiC has been formed in carbothermal reaction than sol-gel method. From the XRD results, the degree of formation of SiC increases in the order of petroleum cokes, activated carbon, artificial graphite all in two introduced methods. Based on the DSC data, the enthalpy values for the exothermic reaction decrease in the order of activated carbon, petroleum cokes, artificial graphite in carbothermal reaction methods, while those for the endothermic reactions increase in the reverse order. But, the enthalpy values for the exothermic reactions decrease in the order of petroleum cokes, activated carbon, artificial graphite in sol-gel methods.

  • PDF

Photodecomposition Mechanism of 2-Methoxy-1,2-diphenyl Diazoethane

  • Seong, Dae Dong;Im, Gwi Taek;Kim, Min Sik;Park, Dong Gyu
    • Bulletin of the Korean Chemical Society
    • /
    • v.16 no.1
    • /
    • pp.47-52
    • /
    • 1995
  • The mechanism of the photodecomposition of 2-methoxy-1,2-diphenyl diazoethane has been investigated in methanol and isoprene using time-resolved laser flash photolysis techniques. The reaction of triplet carbene which is generated from 2-methoxy-1,2-diphenyl diazoethane with methanol is believed to proceed via thermal excitation to the singlet state. The activation energy and enthalpy are consistent with a mechanism involving thermal equilibrium between the triplet and singlet state followed by the reaction of the singlet with methanol to give ether.

Interaction of Wool-Keratine Membrane with Methyl Orange and It's Homologs over the Temperature Range 60~9$0^{\circ}C$ (양모―케라틴 유도체막과 메틸오렌지 및 그 동족체와의 고온영역에서의 상호작용)

  • Jeon, Jae Hong;Lee, Hwa Sun;Kim, Gong Ju
    • Textile Coloration and Finishing
    • /
    • v.7 no.2
    • /
    • pp.40-46
    • /
    • 1995
  • In order to study the dyeability of wool S-cyano ethylated wool-keratine(SCEK) as a model compound of wool was prepared from the reaction of reduced merino wool fiber and acrylonitrile. The binding of acid dyes(methyl orange and it's homologs) by SCEK over the temperature 60~9$0^{\circ}C$ were investigated. The first binding constants and the thermodynamic parameters in the course of the binding were evaluated. It was found that at the 60~9$0^{\circ}C$ range complex formation between the dye and SCEK is associated with an exothermic enthalpy change and a positive entropy change. The enthalpy and entropy changes of the binding are of the order of -4.5 kcal/mole and 8.5 eu, respectively, for each dye measured. Thus the binding is mainly enthalpy-controlled. Furthermore the effect of the alkyl chain length of the dye on both the ΔH$^{\circ}$and ΔS$^{\circ}$value is not prounced. Also temperature dependences of the ΔH$^{\circ}$and ΔS$^{\circ}$values were not obserbed.

  • PDF

Kinetics of the Bromine-Exchange Reaction of Gallium Bromide with n-Propyl Bromide in 1,2,4-Trichlorobenzene and in Nitrobenzene

  • Kwun, Oh-Cheun;Kim, Young-Cheul;Choi ,Sang-Up
    • Bulletin of the Korean Chemical Society
    • /
    • v.2 no.3
    • /
    • pp.86-89
    • /
    • 1981
  • The rate of the bromine-exchange reaction between gallium bromide and n-propyl bromide in 1,2,4-trichlorobenzene and in nitrobenzene was measured at 19, 25 and $40^{\circ}C$, using n-propyl bromide labelled with Br-82. The results indicated that the exchange reaction was second order with respect to gallium bromide and first order with respect to n-propyl bromide. The third-order rate constant determined at $19^{\circ}C$ is $2.9{\times} 10^{-2}l^2{\cdot}mole^{-2}{\cdot}sec^{-1}$ in 1,2,4-trichlorobenzene and $4.5{\times}10^{-3}l^2{\cdot}mole^{-2}{\cdot}sec^{-1}$. in nitrobenzene. The activation energy, the enthalpy of activation and the entropy of activation for the exchange reaction were also determined. Reaction mechanism for the bromine exchange of n-propyl bromide seemed to be similar to those observed in earlier studies with other alkyl bromides.

Kinetic Studies for the Reaction of p-Methylphenacyl Arenesulfonates with Pyridine under High Pressures (고압하에서 p-Methylphenacyl Arenesulfonate와 피리딘과의 반응메카니즘)

  • Yoh Soo-Dong;Park Heon-Young;Park Jong-Hwan;Hwang Jeong-Ui
    • Journal of the Korean Chemical Society
    • /
    • v.35 no.1
    • /
    • pp.64-69
    • /
    • 1991
  • Kinetics of the reaction of p-methylphenacyl arenesulfonates with pyridine in acetonitrile were investigated by an electric conductivity method at 1∼2000 bars and 35∼55$^{\circ}C$. The rates of these reactions were increased with raising pressures and temperatures. The activation enthalpy(${\Delta}H^{\neq}$), entropy(${\Delta}S^{\neq}$) and activation volume(${\Delta}V^{\neq}$) of the reaction were obtained with the rate constants. Activation volume and entropy were both negative valued, and activation enthalpy was positive. The acteivation parameters (${\Delta}V^{\neq}$ and ${\Delta}S^{\neq}$) were decreased with increasing pressure. From all of the above results, it was found that this reaction proceeds on the S$_N$2 in which C${\cdots}$O bond breaking is more advanced as pressure increases.

  • PDF

The Heat Management of PEM Fuel Cell Stack (운전 조건에 따른 PEMFC 스택 열 관리)

  • Son, Ik-Jae;Lee, Jong-Hyun;Nam, Gi-Young;Ko, Jae-Jun;Ahn, Byung-Ki
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.21 no.3
    • /
    • pp.184-192
    • /
    • 2010
  • PEM fuel cell produces electric power, water and heat by the electrochemical reaction of hydrogen and oxygen. The heating value is dependent on the molar enthalpy of vaporization of product water and the performance loss. In this paper, the heating value of fuel cell stack has been studied under various stack operating temperatures to achieve more efficient heat management. A technology using the molar enthalpy of vaporization of product water is suggested to reduce heat-up time during start-up of a fuel cell vehicle.

Thermodynamic Properties of Ubiquitin Folding Intermediate (Ubiquitin 폴딩 intermediate의 열역학적 특성)

  • Park, Soon-Ho
    • Applied Biological Chemistry
    • /
    • v.47 no.1
    • /
    • pp.33-40
    • /
    • 2004
  • Thermodynamic properties of ubiquitin transient folding intermediate were studied by measuring folding kinetics in varying temperatures and denaturant concentrations. Through quantitative kinetic modeling, the equilibrium constant, hence folding free energy, between unfolded state and intermediate state in several different temperatures were calculated. Using these values, the thermodynamic parameters were estimated. The heat capacity change $({\Delta}C_p)$ upon formation of folding intermediate from unfolded state were estimated to be around 80% of the overall folding reaction, indicating that ubiquitin folding intermediate is highly compact. At room temperature, the changes of enthalpy and entropy upon formation of the intermediate state were observed to be positive. The positive enthalpy change suggests that the breaking up of the highly ordered solvent structure surrounding hydrophobic side-chain upon formation of intermediate state. This positive enthalpy was compensated for by the positive entropy change of whole system so that formation of transient intermediate has negative free energy.

Heat and Mass Transfer Properties of Mm-Based Metal Hydride upon Co Content (Mm계 금속수소화물의 Co함량에 따른 열 및 물질전달특성)

  • Park, Chan-kyo
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.15 no.2
    • /
    • pp.144-151
    • /
    • 2004
  • The effect of the cobalt content on the thermodynamic and, heat and mass transfer properties of the $MmNi_{5-y}B_{y-z}C_z(y=0.5{\sim}1.5,\;z=0.5)$hydrogen storage alloys has been studied systematically. The P-C isotherms curves show that with increasing cobalt content in the alloys, the plateau pressure of the hydrogen absorption and desorption and enthalpy(${\Delta}H$) increases steeply and the plateau region becomes flat, while entropy(${\Delta}S$) decreases. Also at the constant cobalt content the hydrogen transfer rate decreases with the reaction temperature, while the initial reaction kinetics increases. But the initial reaction with hydrogen completes within 1min, although the reaction proceeds about 30minutes thereafter.

Vucanization Study by DSC (DSC를 이용한 가황반응 연구)

  • Cho, Duk-Won;Yoon, Chan-Ho
    • Elastomers and Composites
    • /
    • v.27 no.4
    • /
    • pp.275-280
    • /
    • 1992
  • Vulcanization reaction was studied by DSC through the comparison cure states to physical properties and the investegation of chemicals effect on vulcanization. Reaction enthalpy showed a good correlation with physical properties, increased with the increase of sulfur content, and increased with accelerator content, as well, where the ratio of MOR to sulfur was less than 1.0. Reaction temperature was decreased with increasing accelerator content and decreased also with sulfur content where the ratio of MOR to sulfur was more than 1:3. As a result, the cure state and reaction temperature could be controlled effectively with the ratio of accelerator to sulfur in the range of a third to unity.

  • PDF