Kinetic Studies for the Reaction of p-Methylphenacyl Arenesulfonates with Pyridine under High Pressures

고압하에서 p-Methylphenacyl Arenesulfonate와 피리딘과의 반응메카니즘

  • Yoh Soo-Dong (Department of Chemistry, Teachers College, Kyungpook National University) ;
  • Park Heon-Young (Department of Chemistry, Teachers College, Kyungpook National University) ;
  • Park Jong-Hwan (Department of Chemistry, Teachers College, Kyungpook National University) ;
  • Hwang Jeong-Ui (Department of Chemistry, College of Natural Sciences, Kyungpook National University)
  • 여수동 (경북대학교 사범대학 화학교육과) ;
  • 박헌영 (경북대학교 사범대학 화학교육과) ;
  • 박종환 (경북대학교 사범대학 화학교육과) ;
  • 황정의 (경북대학교 자연과학대학 화학과)
  • Published : 1991.02.20

Abstract

Kinetics of the reaction of p-methylphenacyl arenesulfonates with pyridine in acetonitrile were investigated by an electric conductivity method at 1∼2000 bars and 35∼55$^{\circ}C$. The rates of these reactions were increased with raising pressures and temperatures. The activation enthalpy(${\Delta}H^{\neq}$), entropy(${\Delta}S^{\neq}$) and activation volume(${\Delta}V^{\neq}$) of the reaction were obtained with the rate constants. Activation volume and entropy were both negative valued, and activation enthalpy was positive. The acteivation parameters (${\Delta}V^{\neq}$ and ${\Delta}S^{\neq}$) were decreased with increasing pressure. From all of the above results, it was found that this reaction proceeds on the S$_N$2 in which C${\cdots}$O bond breaking is more advanced as pressure increases.

아세토니트릴 용매 중에서 p-methylphenacyl arenesulfonate와 피리딘의 반응을 1∼2000 bars 및 35∼55$^{\circ}C$에서 전기전도도법으로 측정하였다. 반응속도는 온도와 압력의 증가에 따라 증가하였으며, 이탈기에 전자받개 치환기가 도입됨에 따라 증가하였다. 활성화엔탄피, 엔트로피 및 부피로부터 이 반응은 전반적으로 S$_N$2 반응으로 진행되나 압력이 증가함에 따라 C${\cdots}$O 결합분열이 더욱 진전된 dissociative S$_N$2 반응으로 진행됨을 알 수 있었다.

Keywords

References

  1. Z. Pysik. Chem. v.5 N. Menschutkin
  2. Z. Pysik. Chem. v.6 N. Menschutkin
  3. Nippon KaKaKuKaishi M. Tsuruta;K. Murai
  4. High Pressure Physics and Chemistry v.2 S. D. Hamann
  5. Dokl. Akad. Nauk. USSR v.122 M. G. Gonikberg;A. L. Kitaigorodsky
  6. J. Chem. Edu. v.44 W. J. leNoble
  7. J. Am. Chem. Soc. v.97 T. Okamoto;K. I. Lee
  8. Bull. Chem. Soc. Japan v.46 K. Tamura;T. Ogo;T. Imoto
  9. ph. D, Thesis, Kyungpook National University O. S. Lee
  10. Tetrahedron Letter v.29 no.35 S. D. Yoh;O. S. Lee
  11. This Journal v.24 J. U. Hwang;S. D. Yoh;J. G. Jee
  12. This Journal v.28 no.2 S. D. Yoh;J. H. Park
  13. This Journal v.30 S. D. Yoh;J. H. Park
  14. Bull. Chem. Soc., Perkin Trans. 2 S. D. Yoh(et al.)
  15. J. Chem. Soc., Perkin Trans. 2 S. D. Yoh(et al.)
  16. This Journal v.32 S. D. Yoh(et al.)
  17. The Theory of Rate Reaction S. Glasstone;K. J. Laidler;H. Eyring
  18. Can. J. Chem. v.49 M. J. Mackinon;J. B. Hyne
  19. Inter. J. Chem. Kinetics v.7 K. J. Laidler;R. Martin
  20. Progress in Physical Organic Chemistry v.5 W. J. leNoble
  21. J. Basic Sciences v.7 O. C. Kwun;K. J. Choi;Y. H. Lee
  22. J. Basic Sciences v.7 O. C. Kwun;J. B. Kyong;Y. H. Lee
  23. Solvolysis Mechanism E. R. Thornton
  24. J. Chem. Soc. D. A. Brown;R. F. Hudson
  25. This Journal v.23 K. A. Lee;K. T. Howang;S. D. Yoh
  26. J. Am. Chem. Soc. v.59 L. P. Hammett
  27. Physical Organic Chemistry L. P. Hammett