• Title/Summary/Keyword: Reaction conditions optimization

Search Result 237, Processing Time 0.028 seconds

Optimization of Curing Pressure for Automatic Pressure Gelation Molding Process of Ultra High Voltage Insulating Spacers (초고압 절연 스페이서의 자동가압 겔화 성형 공정을 위한 경화 보압의 최적화 )

  • Chanyong Lee;Hangoo Cho;Jaehyeong Lee
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.37 no.1
    • /
    • pp.56-62
    • /
    • 2024
  • By introducing curing kinetics and chemo-rheology for the epoxy resin formulation for ultra-high voltage gas insulated switchgear (GIS) Insulating Spacers, a study was conducted to simulate the curing behavior, flow and warpage analysis for optimization of the molding process in automatic pressure gelation. The curing rate equation and chemo-rheology equation were set as fixed values for various factors and other physical property values, and the APG molding process conditions were entered into the Moldflow software to perform optimization numerical simulations of the three-phase insulating spacer. Changes in curing shrinkage according to pack pressure were observed under the optimized process conditions. As a result, it was confirmed that the residence time in the solid state was shortened due to the lowest curing reaction when the curing holding pressure was 3 bar, and the occurrence of deformation due to internal residual stress was minimized.

Optimization of acid hydrolysis conditions of Hovenia dulcis extract for increasing bioactive compound

  • Kang, Sung-Hee;Kim, Sung-Mun;Kim, Jin-Hyun
    • 한국생물공학회:학술대회논문집
    • /
    • 2005.04a
    • /
    • pp.360-363
    • /
    • 2005
  • This study was a method that used a hydrolysis for increasing the efficacy of alcohol decrease from Hovenia dulcis extract. The best pH was 2.0 to obtain a maximum activity at fixed reaction temperature and time. At pH 2.0, reaction temperature $80^{\circ}C$ and reaction time 4 hr gave the highest activity which was 124.2% of control. This is very simple and efficient method to increase the efficacy of alcohol decrease from Hovenia dulcis extract. The mechanism that increases the efficiency of alcohol decrease be examined through hydrolysis.

  • PDF

Optimization for Preparation of Malic acid-catalyzed Ginsenoside Rg3 by Response Surface Methodology (반응 표면 분석법을 이용한 홍삼 사포닌으로부터의 사과산 활용 진세노사이드 Rg3 전환 최적화)

  • Ki Seong Kim;Junseong Park
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.49 no.4
    • /
    • pp.375-383
    • /
    • 2023
  • Malic acid-catalyzed transformation has been developed to produce ginsenoside Rg3 which is increasingly in demand as a functional ingredient. The optimization of the conversion of red ginseng saponin (RGS) to ginsenoside Rg3 by acid catalyzed transformation was carried out using Box-Behnken design (BBD) based on Response Surface Analysis (RSM). The main independent variables were malic acid concentration, temperature, and reaction time. Conversion of ginsenoside Rg3 was performed according to BBD model and optimization conditions were analyzed. The concentration of the converted ginsenoside Rg3 ranged from 1.548 mg/L to 4.558 mg/L, and the highest production was obtained under the condition of reacting 1% malic acid, 50 ℃ and 9h. Consequently, The independent variables affecting the production of ginsenoside Rg3 were identified in the following order: malic acid concentration, reaction time and temperature. In addition, it was confirmed that the interaction between malic acid concentration and reaction time had a greater influence than the temperature.

Optimization of Ascorbic Acid Extraction from Rugosa Rose (Rosa rugosa Thunb.) Fruit Using Response Surface Methodology and Validation of the Analytical Method

  • UM, Min;KIM, Ji-Woo;LEE, Jae-Won
    • Journal of the Korean Wood Science and Technology
    • /
    • v.48 no.3
    • /
    • pp.364-375
    • /
    • 2020
  • In this study, ultrasound-assisted extraction was performed to extract ascorbic acid from rugosa rose (Rosa rugosa Thunb.) fruit. The optimal conditions were investigated by response surface methodology, using two variable including reaction time (16-44 min) and temperature (16-44℃). The ascorbic acid extraction was sensitive to the reaction time rather than the reaction temperature, and the optimal conditions for ascorbic acid extraction were 25℃ and 30 min. Ascorbic acid and gallic acid in the rugosa rose fruit extract were completely separated by HPLC, with a resolution factor of over 1.5 between the two. The correlation coefficient of the ascorbic acid was 0.999 in a linearity test for 50-150 ㎍/mL concentration of extract. The limit of detection and limit of quantification values were 0.16 ㎍/mL and 29.89 ㎍/mL, respectively. The relative standard deviations (RSD) for repeatability and reproducibility were determined, and each RSD showed good precision at less than 5% (N=6).

Preparation of Cosmeceuticals Containing Flos Sophorae Immaturus Extracts: Optimization Using Box-Behnken Design Model (회화나무꽃 추출물이 함유된 Cosmeceuticals의 제조: Box-Behnken 설계모델을 이용한 최적화)

  • Yoo, Bong-Ho;Zuo, Chengliang;Lee, Seung Bum
    • Applied Chemistry for Engineering
    • /
    • v.31 no.4
    • /
    • pp.404-410
    • /
    • 2020
  • In this study, the stability criteria of cosmeceuticals emulsion containing Flos Sophorae Immaturus extracts was established using the Box-Behnken design model (BBD-RSM). As optimization conditions of the emulsification using the BBD-RSM, the amount of surfactant and additive, and emulsification time and speed were used as quantitative factors while mean droplet size (MDS), viscosity and emulsion stability index (ESI) were used as reaction values. According to the result of BBD-RSM, optimum conditions for the emulsification were as follows; the emulsification time and speed of 17.8 min and 5505 rpm, respectively and amounts of the emulsifier and additive of 2.28 and 1.05 wt.%, respectively. Under these conditions, the MDS, viscosity, and ESI after 7 days from the reaction were estimated as 1875.5 nm, 1789.7 cP, and 93.8%, respectively. The average error value from our actual experiments for verifying the conclusions was below 5%, which is mainly due to the fact that the BBD-RSM was applied to the optimized cosmeceuticals emulsification.

Mathematical Planning for Revealing Optimal Synthetic Conditions of Naphthalene Chloromethylation

  • Pak, V.V.;Karimov, R.K.;Shakhidoyatov, Kh.M.;Yun, L.M.;Soh, D.W.
    • Journal of the Speleological Society of Korea
    • /
    • no.71
    • /
    • pp.1-4
    • /
    • 2006
  • Chloromethylnaphthalene is a valuable compound for obtaining of the plant growing stimulator - -napthylacetic acid. Chloromethylation of naphthalene by paraformaldehyde in the presence of glacial acetic acid, phosphoric and hydrochloric acids at temperature 80 - 85C and duration - 6 hours the -chloromethylnaphthalene yield was 55-57%. Using Box-Wilson method for mathematical planning of experiment carried out optimization of its synthesis for purpose increasing -chloromethylnaphthalene yield. Preliminary, one - factor experiments were carried out for selecting independence main parameters influencing on the synthesis. A full factor experiment of 23 with extended matrix of planning was used for optimization. Aiming to increase the -chloromethylnaphthalene yield, the obtained mathematical model was used for program of sharp raising on the reply surface. The received optimal conditions for the -chloromethylnaphthalene synthesis were selected as following: molar ratio of naphthalene parapfsormaldehyde of 1 : 2 temperature - 105C duration of the reaction - 3 hours. The yield of -chloromethylnaphthalene under these optimal conditions was 75%.

Chloromethylation of Naphthalene and Mathematical Planning of Experiment for Revealing Optimal Synthetic Conditions

  • V.V. Pak;R.K. Karimov;Kh.M. Shakhidoyatov;L.M. Yun;Soh, Dea-Wha
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2004.05a
    • /
    • pp.36-37
    • /
    • 2004
  • $\alpha$-Chloromethylnaphthalene is a valuable compound for obtaining of the plant growing stimulator - $\alpha$-napthylacetic acid. Chloromethylation of naphthalene by paraformaldehyde in the presence of glacial acetic acid, phosphoric and hydrochloric acids at temperature 80-85$^{\circ}C$ and duration - 6 hours the $\alpha$-chloromethyl-naphthalene yield was 55-57%. Using Box-Wilson method for mathematical planning of experiment carried out optimization of its synthesis for purpose increasing $\alpha$-chloromethylnaphthalene yield. Preliminary, one - factor experiments were carried out for selecting independence main parameters influencing on the synthesis. A full factor experiment of 2$^3$with extended matrix of planning was used for optimization. Aiming to increase the $\alpha$-chloromethylnaphthalene yield, the obtained mathematical model was used for program of sharp raising on the reply surface. The received optimal conditions for the $\alpha$-chloromethylnaphthalene synthesis were selected as following: molar ratio of naphthalene - parapfsormaldehyde of 1 : 2; temperature -105$^{\circ}C$; duration of the reaction -3 hours. The yield of $\alpha$-chloromethylnaphthalene under these optimal conditions was 75 %.

  • PDF

Evaluation of Three Feasible Biodegradation Models for Food Waste

  • Kwon, Sung-Hyun;Cho, Daechul
    • Clean Technology
    • /
    • v.28 no.1
    • /
    • pp.32-37
    • /
    • 2022
  • Food waste is produced from food factories, food services, and home kitchens. The generated mass reached 5.4 million tons/year in 2020. The basic management technology for such waste has been biological degradation under an anaerobic environment. However, the whole process is intrinsically slow and considerably affected by the inner physicochemical properties of the waste and other surrounding conditions, which makes optimization of the process difficult. The most promising options to counter this massive generation of waste are eco-friendly treatments or recycling. As a preliminary step for these options, attempts were made to evaluate the feasibility and usability of three simulative models based on reaction kinetics. Model (A) predicted relative changes over reaction time for reactant, intermediate, and product. Overall, an increased reaction rate produced less intermediate and more product, thereby leading to a shorter total reaction time. Particle diminishing model (B) predicted reduction of the total waste mass. The smaller particles diminished faster along with the dominant effect of microbial reaction. In Model (C), long-chain cellulose was predicted to transform into reducing sugar. At a standard condition, 48% of cellulose molecules having 105 repeating units turned into reducing sugar after 100 h. Also it was found that the optimal enzyme concentration where the highest amount of remnant sugar was harvested was 1 mg L-1.

Optimization of O/W Emulsion with Natural Surfactant Extracted from Medicago sativa L. using CCD-RSM (CCD-RSM을 이용한 알팔파 추출물인 천연계면활성제가 포함된 O/W 유화액의 최적화)

  • Seheum Hong;Jiachen Hou;Seung Bum Lee
    • Applied Chemistry for Engineering
    • /
    • v.34 no.2
    • /
    • pp.137-143
    • /
    • 2023
  • In this study, natural surfactants were extracted from Medicago sativa L. The O/W emulsification processes with the extracted natural surfactants were optimized using central composite design model-response surface methodology (CCD-RSM) and a 95% confidence interval was used to confirm the reasonableness of the optimization. Herein, independent parameters were the ratio of saponins to total surfactant (P), amount of surfactant (W), and emulsification speed (R), whereas the reaction parameters were the emulsion stability index (ESI), mean droplet size (MDS), and viscosity (V). Using the multiple reaction, the optimal conditions for the ratio of saponins to total surfactant, amount of surfactant, and emulsification speed for O/W emulsification were 49.5%, 9.1 wt%, and 6559.5 rpm, respectively. Under these optimal conditions, the expected values of ESI, MDS, and V as the reaction parameters were 89.9%, 1058.4 nm, and 1522.5 cP, respectively. The values of ESI, MDS, and V from these expected values were 88.7%, 1026.4 nm, and 1486.5 cP, respectively, and the average experimental error for validating the accuracy was about 2.3 (± 0.4)%. Therefore, it was possible to design an optimization process for evaluating the O/W emulsion process with Medicago sativa L. using CCD-RSM.

Optimization of the Reaction Conditions and the Effect of Surfactants on the Kinetic Resolution of [R,S]-Naoroxen 2,2,2-Trifluoroethyl Thioester by Using Lipse (리파아제를 이용한 라세믹 나프록센 2,2,2-트리플로로에틸 씨오에스터의 Kinetic Resolution에서 반응조건 죄적화와 계면활성제 영향)

  • Song, Yoon-Seok;Lee, Jung-Ho;Cho, Sang-Won;Kang, Seong-Woo;Kim, Seung-Wook
    • KSBB Journal
    • /
    • v.23 no.3
    • /
    • pp.257-262
    • /
    • 2008
  • In this study, the reaction conditions for lipase-catalyzed resolution of racemic naproxen 2,2,2-trilfluoroethyl thioester were optimized, and the effect of surfactants was investigated. Among the organic solvents tested, the isooctane showed the highest conversion (92.19%) in a hydrolytic reaction of (S)-naproxen 2,2,2-trifluoroethyl thioester. In addition, the isooctane induced the highest initial reaction rate of (S)-naproxen 2,2,2-trifluoroethyl thioester ($V_s=2.34{\times}10^{-2}mM/h$), the highest enantioselectivity (E = 36.12) and the highest specific activity ($V_s/(E_t)=7.80{\times}10^{-4}mmol/h{\cdot}g$) of lipase. Furthermore, reaction conditions such as temperature, concentration of the substrate and enzyme, and agitation speed were optimized using response surface methodology (RSM), and the statistical analysis indicated that the optimal conditions were $48.2^{\circ}C$, 3.51 mM, 30.11 mg/mL and 180 rpm, respectively. When the optimal reaction conditions were used, the conversion of (S)-naproxen 2,2,2-trifluoroethyl thioester was 96.5%, which is similar to the conversion (94.6%) that was predicted by the model. After optimization of reaction conditions, the initial reaction rate, lipase specific activity and conversion of (S)-naproxen 2,2,2-trifluoroethyl thioester increased by approximately 19.54%, 19.12% and 4.05%, respectively. The effect of surfactants such as Triton X-100 and NP-10 was also studied and NP-10 showed the highest conversion (89.43%), final reaction rate of (S)-naproxen 2,2,2-trifluoroethyl thioester ($V_s=1.175{\times}10^{-2}mM/h$) and enantioselectivity (E = 59.24) of lipase.