• Title/Summary/Keyword: Reaction conditions optimization

Search Result 237, Processing Time 0.033 seconds

Optimization of DME Reforming using Steam Plasma (수증기 플라즈마를 이용한 DME 개질의 최적화 방안 연구)

  • Jung, Kyeongsoo;Chae, U-Ri;Chae, Ho Keun;Chung, Myeong-Sug;Lee, Joo-Yeoun
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.24 no.5
    • /
    • pp.9-16
    • /
    • 2019
  • In today's global energy market, the importance of green energy is emerging. Hydrogen energy is the future clean energy source and one of the pollution-free energy sources. In particular, the fuel cell method using hydrogen enhances the flexibility of renewable energy and enables energy storage and conversion for a long time. Therefore, it is considered to be a solution that can solve environmental problems caused by the use of fossil resources and energy problems caused by exhaustion of resources simultaneously. The purpose of this study is to efficiently produce hydrogen using plasma, and to study the optimization of DME reforming by checking the reforming reaction and yield according to temperature. The research method uses a 2.45 GHz electromagnetic plasma torch to produce hydrogen by reforming DME(Di Methyl Ether), a clean fuel. Gasification analysis was performed under low temperature conditions ($T3=1100^{\circ}C$), low temperature peroxygen conditions ($T3=1100^{\circ}C$), and high temperature conditions ($T3=1376^{\circ}C$). The low temperature gasification analysis showed that methane is generated due to unstable reforming reaction near $1100^{\circ}C$. The low temperature peroxygen gasification analysis showed less hydrogen but more carbon dioxide than the low temperature gasification analysis. Gasification analysis at high temperature indicated that methane was generated from about $1150^{\circ}C$, but it was not generated above $1200^{\circ}C$. In conclusion, the higher the temperature during the reforming reaction, the higher the proportion of hydrogen, but the higher the proportion of CO. However, it was confirmed that the problem of heat loss and reforming occurred due to the structural problem of the gasifier. In future developments, there is a need to reduce incomplete combustion by improving gasifiers to obtain high yields of hydrogen and to reduce the generation of gases such as carbon monoxide and methane. The optimization plan to produce hydrogen by steam plasma reforming of DME proposed in this study is expected to make a meaningful contribution to producing eco-friendly and renewable energy in the future.

Optimization of liquid phase enzyme immunoassay for determining of progesterone (Progesterone 측정을 위한 액상(液相) 효소면역측정법(酵素免疫測定法)의 최적조건에 관한 연구)

  • Kang, Chung-boo;Choi, Il-kwan;Son, Min-soo;Hur, Ju-hyeong;Kim, Chur-ho
    • Korean Journal of Veterinary Research
    • /
    • v.32 no.3
    • /
    • pp.429-434
    • /
    • 1992
  • This study was carried out to develop an effective liquid-phase double antibody enzyme immunoassay for determining of progesterone. The optimum conditions of assay system, 1st and 2nd antibodies, enzyme conjugate, and time reaction were invested. The bovine plasma progesterone level in dairy cattle and korean native bulls were also analyzed. The results obtained were as follows; 1. The reproducibility of petroleum ether was superior to that of ethyl ether as extract solvent of progesterone in plasma. 2. The optimum dilution rate of 1st and 2nd antibody was 30,000 and 10 times, respectively. Affer the reaction of enzyme conjugate to progesterone 1st antibody, and then 2nd antibody competition reaction was enough for over 1hr. 3. Average plasma progesterone level in 4 pregnant and 9 nonpregnant Holstein was $2.5{\pm}0.5$ and $0.7{\pm}0.2ng/m{\ell}$, respectively. Average plasma progesterone level of 10 Korean native bulls was $0.1{\pm}0.001ng/m{\ell}$ From these results, by using liquid phase double antibody enzyme immunoassay for progesterone is applicable to detect of early pregnancy diagnosis, factorial analysis of reproductive disorder, and also reproductive physiological function such as monitoring of cyclicity during the post-partum period.

  • PDF

Modification of N-Terminal Amino Acids of Fungal Benzoate Hydroxylase (CYP53A15) for the Production of p-Hydroxybenzoate and Optimization of Bioproduction Conditions in Escherichia coli

  • Tamaki, Shun;Yagi, Mitsuhiko;Nishihata, Yuki;Yamaji, Hideki;Shigeri, Yasushi;Uno, Tomohide;Imaishi, Hiromasa
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.3
    • /
    • pp.439-447
    • /
    • 2018
  • The aromatic compound p-hydroxybenzoate (PHBA) is an important material with multiple applications, including as a building block of liquid crystal polymers in chemical industries. The cytochrome P450 (CYP) enzymes are beneficial monooxygenases for the synthesis of chemicals, and CYP53A15 from fungus Cochliobolus lunatus is capable of executing the hydroxylation from benzoate to PHBA. Here, we constructed a system for the bioconversion of benzoate to PHBA in Escherichia coli cells coexpressing CYP53A15 and human NADPH-P450 oxidoreductase (CPR) genes as a redox partner. For suitable coexpression of CYP53A15 and CPR, we originally constructed five plasmids in which we replaced the N-terminal transmembrane region of CYP53A15 with a portion of the N-terminus of various mammalian P450s. PHBA productivity was the greatest when CYP53A15 expression was induced at $20^{\circ}C$ in $2{\times}YT$ medium in host E. coli strain ${\Delta}gcvR$ transformed with an N-terminal transmembrane region of rabbit CYP2C3. By optimizing each reaction condition (reaction temperature, substrate concentration, reaction time, and E. coli cell concentration), we achieved 90% whole-cell conversion of benzoate. Our data demonstrate that the described novel E. coli bioconversion system is a more efficient tool for PHBA production from benzoate than the previously described yeast system.

A study on the analysis of bearing reaction forces and hull deflections affecting shaft alignment using strain gauges for a 50,000 DWT oil/chemical tanker (스트레인 게이지를 이용한 5만 DWT급 석유화학제품운반선의 베어링 반력 및 선체변형량 분석에 관한 연구)

  • Lee, Jae-Ung
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.4
    • /
    • pp.288-294
    • /
    • 2016
  • In modern ships, the shafting system often becomes stiff owing to the high engine power, whereas the hull structure becomes more flexible owing to optimization using high-tensile-strength thick steel plates; therefore, more sophisticated shaft alignments are required. In this study, strain gauge-based measurement was conducted under five vessel operating conditions and bearing reaction forces and hull deflections affecting shaft alignment were analyzed for a 50,000 dead weight tonnage oil/chemical tanker that has gained repute as an eco-friendly vessel in recent years. Furthermore, the analytical results from each technique-theoretical calculation, jacking ups, and strain gauges-were cross-checked against each other in order to enhance the degree of accuracy and reliability of the calculation.

Organosolv Pretreatment of Slurry Composting and Biofiltration of Liquid Fertilizer-Treated Yellow Poplar for Sugar Production

  • Kim, Ho-Yong;Gwak, Ki-Seob;Jang, Soo-Kyeong;Ryu, Keun-Ok;Yeo, Hwanmyeong;Choi, In-Gyu
    • Journal of the Korean Wood Science and Technology
    • /
    • v.43 no.5
    • /
    • pp.578-590
    • /
    • 2015
  • The present study examines the influence of slurry composting and biofiltration liquid fertilizer (SCBLF) treatment on the biomass characteristics of yellow poplar, and the optimization of organosolv pretreatment for sugar production. After SCBLF treatment, total exchangeable cation contents of yellow poplar was increased from $3.1g\;kg^{-1}$ to $4.4g\;kg^{-1}$, and as a result, biomass production of yellow poplar was also enhanced by 82.3%. Organosolv pretreatment was conducted with three independent variables: 1) reaction temperature: $133.2^{\circ}C$ to $166.8^{\circ}C$; 2) acid concentration: 0.2% to 1.8%; and 3) reaction time: 1.6 min to 18.4 min. Reaction temperature was the most significant variable in water insoluble solid (WIS) recovery rate. High overall sugar yield was attained from pretreatment conditions approximately 50% of WIS recovery rate, and the highest overall glucose yield (44.0%) was achieved from pretreatment at $140^{\circ}C$ with 1.5% acid concentration for 5 min. Consequently, 21.1% of glucose and 5.8% of xylose were produced from the organosolv pretreatment of SCBLF-treated 8-year-old yellow poplar.

Optimization of soaking in aqueous ammonia pretreatment of canola residues for sugar production (당 생산을 위한 카놀라 부산물의 암모니아 침지 전처리 공정의 최적화)

  • Yoo, Hah-Young;Kim, Sung Bong;Lee, Sang Jun;Lee, Ja Hyun;Suh, Young Joon;Kim, Seung Wook
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.114.1-114.1
    • /
    • 2011
  • Bioenergy production from lignocellulosic biomass and agriculture wastes have been attracted because of its sustainable and non-edible source. Especially, canola is considered as one of the best feedstock for renewable fuel production. Oil extracted canola and its agriculture residues are reuseable for bioethanol production. However, a pretreatment step is required before enzymatic hydrolysis to disrupt recalcitrant lignocellulosic matrix. To increase the sugar conversion, more efficient pretreatment process was necessary for removal of saccharification barriers such as lignin. Alkaline pretreatment makes the lignocellulose swollen through solvation and induces more porous structure for enzyme access. In our previous work, aqueous ammonia (1~20%) was utilized for alkaline reagent to increase the crystallinity of canola residues pretreatment. In this study, significant factors for efficient soaking in aqueous ammonia pretreatment on canola residues was optimized by using the response surface method (RSM). Based on the fundamental experiments, the real values of factors at the center (0) were determined as follows; $70^{\circ}C$ of temperature, 17.5% of ammonia concentration and 18 h of reaction time in the experiment design using central composition design (CCD). A statistical model predicted that the highest removal yield of lignin was 54% at the following optimized reaction conditions: $72.68^{\circ}C$ of temperature, 18.30% of ammonia concentration and 18.30 h of reaction time. Finally, maximum theoretical yields of soaking in aqueous ammonia pretreatment were 42.23% of glucose and 22.68% of xylose.

  • PDF

Optimization of coagulant dosing process in water purification system using neural network (신경회로망을 이용한 상수처리시스템의 응집제 주입공정 최적화)

  • Nam, Ui-Seok;Park, Jong-Jin;Jang, Seok-Ho;Cha, Sang-Yeop;U, Gwang-Bang;Lee, Bong-Guk;Han, Tae-Hwan;Go, Taek-Beom
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.3 no.6
    • /
    • pp.644-651
    • /
    • 1997
  • In the water purification plant, chemicals are injected for quick purification of raw water. It is clear that the amount of chemicals intrinsically depends on water quality such as turbidity, temperature, pH and alkalinity. However, the process of chemical reaction to improve water quality (e.g., turbidity) by chemicals is not yet fully clarified nor quantified. The feedback signal in the process of coagulant dosage, which should be measured (through the sensor of the plant) to compute the appropriate amount of chemicals, is also not available. Most traditional methods focus on judging the conditions of purifying reaction and determine the amounts of chemicals through manual operation of field experts using Jar-test data. In this paper, a systematic control strategy is proposed to derive the optimum dosage of coagulant, PAC(Polymerized Aluminium Chloride), using Jar-test results. A neural network model is developed for coagulant dosing and purifying process by means of six input variables (turbidity, temperature, pH, alkalinity of raw water, PAC feed rate, turbidity in flocculation) and one output variable, while considering the relationships to the reaction of coagulation and flocculation. The model is utilized to derive the optimum coagulant dosage (in the sense of minimizing turbidity of water in flocculator). The ability of the proposed control scheme validated through the field test has proved to be of considerable practical value.

  • PDF

Emulsification and Stability of Wheat Germ Oil in Water Emulsions: Optimization using CCD-RSM (밀배아유 원료 O/W 유화액의 제조 및 안정성평가: CCD-RSM을 이용한 최적화)

  • Hong, Seheum;Jang, Hyun Sik;Lee, Seung Bum
    • Applied Chemistry for Engineering
    • /
    • v.32 no.5
    • /
    • pp.562-568
    • /
    • 2021
  • An O/W (oil in water) emulsion, wheat germ oil raw material, was produced by using natural wheat germ oil and composite sugar-ester. The effects of variables such as the hydrophile-lipophile balance (HLB) value, added emulsifier amount, and emulsification time on the average particle size, emulsification viscosity and ESI of O/W wheat germ oil emulsion were investigated. The parameters of the emulsification process produced by the central composite design model of the response surface methodology (CCD-RSM), which is a reaction surface analysis method, were simulated and optimized. The optimum process conditions obtained from this paper for the production of O/W wheat germ oil emulsion were 8.4, 6.4 wt%, 25.4 min for the HLB value, amount of emulsifier, and emulsion time, respectively. The predicted reaction values by CCD-RSM model under the optimum conditions were 206 nm, 8125 cP, and 98.2% for mean droplet size (MDS), viscosity, and ESI, respectively, based on the emulsion after 7 days. The MDS, viscosity and ESI of the emulsion obtained from actual experiments were 209 nm, 7974 cP and 98.7%, respectively. Therefore, it was possible to design an optimization process for evaluating the stability of the emulsion of wheat germ oil raw material by CCD-RSM.

Optimization of Synthesis Condition and Determination of Residue for Polyamine Type Flocculant (폴리아민계 고분자 응집제의 합성조건 최적화 및 잔류물분석)

  • Choi, Soo-Young;Park, Lee-Soon;Im, Sung-Hyun;Ryoo, Jae-Jeong;Choi, Sang-June;Hwang, Won-Joo
    • Applied Chemistry for Engineering
    • /
    • v.9 no.7
    • /
    • pp.1043-1046
    • /
    • 1998
  • Aluminium based inorganic flocculants are extensively used in this country in the removal of fine particles present in the raw water for the production of drinking water. These inorganic flocculants, however, have potential hazard of high residual aluminium ions in the treated waters, which is known to be one of the reasons of alzheimer's disease. Inorganic flocculants alone are sometimes incapable of treating water when there are excessive turbidity in the raw water sources due to flooding. A polyamine type polymeric flocculant has long been used to treat raw water in the drinking water production in the European countries and United State of America. The optimum reaction conditions such as mole ratio of epichlorohydrin(EPI) to dimethylamine(DMA), reaction temperature and time for each stage for the pilot scale preparation of polyamine from EPI-DMA was studied in this work. The variation of intrinsic viscosity and flocculating efficiency in the water treatment of the synthesized polyamines were evaluated. The residual materials after polymerization reaction were analyzed by gas chromatography to study the effect of variation of reaction conditions.

  • PDF

Optimization of Lipase-Catalyzed Interesterification for Production of Human Milk Fat Substitutes by Response Surface Methodology (반응표면분석에 의한 모유대체지의 효소적 합성조건 최적화)

  • Son, Jeoung-Mae;Lee, Jeung-Hee;Xue, Cheng-Lian;Hong, Soon-Taek;Lee, Ki-Teak
    • Korean Journal of Food Science and Technology
    • /
    • v.43 no.6
    • /
    • pp.689-695
    • /
    • 2011
  • 1,3-Dioleoyl-2-palmitoylglycerol (OPO)-rich human milk fat substitute (HMFS) was synthesized from tripalmitin (PPP)-rich fraction and oleic ethyl ester by a lipase-catalyzed interesterification. Response surface methodology (RSM) was employed to optimize the presence of palmitic acid at sn-2 position ($Y_1$, %) and of oleic acid at sn-1,3 ($Y_2$, %), with the reaction factors as substrate molar ratio of PPP-rich fraction to oleic ethyl ester ($X_1$, 1:4, 1:5 and 1:6), reaction temperature ($X_2$, 50, 55 and $60^{\circ}C$), and time ($X_3$, 3, 7.5 and 12 h). The optimal conditions for HMFS synthesis were predicted at the reaction combination of $55^{\circ}C$, 3 h and 1:6 substrate ratio. HMFS re-synthesized under the same conditions displayed 70.70% palmitic acid at the sn-2 position and 69.58% oleic acid at the sn-1,3 position. Reaction product was predominantly (90.35%) triacylglycerol (TAG) was observed in which the major TAG species, OPO, comprised 31.24%.