• Title/Summary/Keyword: Reaction characteristic

Search Result 745, Processing Time 0.023 seconds

A Study on Combustion Characteristics and Flow Analysis of a Lean Premixed Flame in Lab-Scale Gas Turbine Combustor (모형 가스터빈 연소기에서 희박 예혼합 화염의 연소 특성 및 유동 해석에 관한 연구)

  • Ryu, Hye-Yeon;Kim, Gyu-Bo;Jeon, Chung-Hwan;Chang, Young-June
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.8
    • /
    • pp.574-581
    • /
    • 2008
  • The characteristics of combustion and flow for a lean premixed flame in lab-scale gas turbine combustor was studied through experiment and numerical analysis. From the experiment, flame structure and heat release rate were obtained from OH emission spectroscopy. Qualitative comparisons were made line-integrated OH chemiluminescence image and abel-transformed one. NOx analyzer was implemented to get the characteristic of NOx exhaust from the combustor. From the numerical analysis, the thermal distribution and characteristic of recirculation zone with the change of fuel-air mixing degree, the characteristic of methane distribution with equivalence ratio in the combustor respectively. Total heat release rate is increased with increasing equivalence ratio. Thermal Nox is reduced with increasing fuel-air mixing degree. Increasing equivalence ratio results in the decrease of the size of reaction zone and alteration of the position of the reaction zone into the entrance of the combustor.

Effect of Particle size and Blending Ratio on Thermo Reaction and Combustion Characteristics in Co-firing with Bituminous and Sub-bituminous Coals (역청탄과 아역청탄 혼합연소조건에서 입자크기와 혼소율이 열물성반응과 연소특성에 미치는 영향)

  • Sung, Yon-Mo;An, Jae-Woo;Moon, Cheor-Eon;Ahn, Seong-Yool;Kim, Sung-Chul;Seo, Sang-Il;Kim, Tae-Hyung;Choi, Gyung-Min;Kim, Duck-Jool
    • Journal of the Korean Society of Combustion
    • /
    • v.15 no.4
    • /
    • pp.65-73
    • /
    • 2010
  • In order to provide fundamental information for developing reaction model in the practical blended coal power plants, effects of particle size and blending ratio on combustion characteristics and thermal reaction in co-firing with bituminous and sub-bituminous coals were experimentally investigated using a TGA and a laboratory-scale burner. Characteristic parameters including ignition, burnout temperature and activation energy were determined from TG and DTG combustion profiles. Distributions of flame length and mean particle temperature were investigated from the visualization of flames in slit-burner system. As coal particle size decreased and volatile matter content increased, characteristic temperatures and activation energy decreased. The ignition/burnout characteristics and activation energy are linearly influenced by a variation in particle size and blending ratio. These results indicated that the control of the coal blending ratio can improve the combustion efficiency for sub-bituminous coals and the ignition characteristics for bituminous coals.

A Development of Test Equipment for Thermal Protection Performance on Insulator used in Solid Rocket Motor (고체로켓 추진기관용 연소관단열재의 내열성능평가를 위한 시험장치 개발)

  • Kang, Yoongoo;Yun, Deokjin;Kim, Suyoung;Lee, Jongsung;Kwon, Taeha
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.543-546
    • /
    • 2017
  • Test equipment was designed and manufactured to evaluate thermal reaction characteristic of internal insulators of solid rocket motor. Test is allowed up to chamber pressure 2,500 psi, burn-time 40 s. It is possible to observe and to compare thermal reaction characteristic for a few materials simultaneously, under the condition that the ablation occurs. In efficient average chamber pressure 878 psi, efficient burn-time 10.7 s and gas velocity 100 m/s, test was executed for confirming safety of equipment, being 4 test materials inserted simultaneously. Basic data for understanding thermal characteristic of internal insulator, that is, pressure-time curve, temperature-time curve in the test sample, and thermal destruction depth of test samples was gained successfully.

  • PDF

The Darkening Effect of Phytosterylferulate on the Rice Bran Oil (Phytosterylferulate가 米糠油 暗色化에 미치는 影響에 關한 硏究)

  • Jum Sik Kim
    • Journal of the Korean Chemical Society
    • /
    • v.13 no.4
    • /
    • pp.325-332
    • /
    • 1969
  • An attempt has been made to investigate the nature of the characteristic darkening reaction occurring in the rice bran oil during the storage. Several pigments were separated by using column and thin layer chromatography of the pigments was made in the light of the knowledge of absorption spectral behavior. The presence of trace amount of iron and phytosteryl esters of ferulic acid (3-methoxy-4-hydroxy-cinnamic acid) was found to be responsible for the development of the characteristic color in rice bran oil. The model reactions with the ferulate, iron and fatty acids could be suggested the mechanism.

  • PDF

A study on the characteristic of hydration reaction in $CaO-Al_2O_3-SiO_2$ system glass ($CaO-Al_2O_3-SiO_2$계 유리의 수화반응특성)

  • 조재우;김승진;김영근;손진군
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.10a
    • /
    • pp.289-292
    • /
    • 1999
  • The charateristic of hydration reaction was studied in CaO-Al2O3-SiO2 system glass. As a result, the rate of heat liberation curves of synthestized glass becomes fixed after having increased by degrees. And it is decreasing after having increased suddenly. It was found that the total heat liberation with hydration for synthesized glass has a close relationship with the formation amount of ettringite.

  • PDF

Reactions of Two Isomeric Thiols with Thianthrene Cation Radical

  • Park, Hyun-Ju;Lee, Wang-Keun
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.9
    • /
    • pp.1335-1338
    • /
    • 2005
  • Thianthrene cation radical perchlorate ($Th^{+{{\cdot}}}{ClO_4}^-$) reacted readily with two isomeric thiols, benzylthiol (1) and 4-methylbenzenethiol (7) in an acetonitrile solution at room temperature. From the reaction of 1, the major products, N-benzylacetamide (4) and benzyl sulfide (5), are characteristic of benzyl carbocations while the minor one, benzyl disulfide (6) implies free radical component of the reaction. It is unprecedented that the formation of a benzyl carbocation was caused by the extrusion of sulfur atoms from benzyl sulfur cations (3). In contrast, from the reaction of 7, only p-tolyl disulfide (10) was obtained from both sulfur radicals and cations. In the reaction of 7 the thio-extrusion was not observed from the p-tolyl sulfur cation (9). A thianthrene cation radical ($Th^{+{{\cdot}}}$) was reduced quantitatively to thianthrene (Th) in both reactions.

A Characteristic of Fe-Cu Interfacial Reaction in the Hydraulic Cylinder Block for Vehicle Parts (수송기기 유압 실린더 블록 재료의 Fe-Cu 계면반응 특성)

  • Kim, Hae-Ji;Kim, Nam-Kyung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.3 no.1
    • /
    • pp.90-94
    • /
    • 2004
  • Generally, a hydraulic cylinder block which is one of a vehicle parts that plays Important role in excavator power transmission, has copper alloy separation phenomenon by sliding motion between metals in high pressure condition. In this paper, to solve this problem, the interfacial reaction layer of Fe-Cu With SCM440 and copper alloy is studied through the melting method. As the result of this study, it is found that the interfacial reaction layer of $1{\mu}m$ created in the interface of Fe-Cu which has very strong physical bonding. It has been also confirmed that the melting method can improve life of the hydraulic cylinder block.

  • PDF

The Optimum Design according to System Variation of Impact Absorbing System for Spreader Considering Dynamic Characteristic (동특성을 고려한 스프레더용 충격흡수기의 시스템 변화에 따른 최적설계)

  • 안찬우;홍도관;김동영;한근조
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.6
    • /
    • pp.230-237
    • /
    • 2003
  • On this study, we operated the dynamic response for impact load of impact absorbing system for spreader by the finite element analysis and showed respectively the spring constant and the damping coefficient which the reaction force by impact was the lowest value for three types impact absorbing system according to the change of system, also we presented the change of impact reaction force according to the spring constant and the damping coefficient. Additionally, among the three types impact absorbing system according to the change of system, the reaction force of model II was the lowest value and the next model which has higher value than model II was model Iand model III has the highest value in the three types.

Design Approach of Large-scale Experimental Facilities Reflect the Load Flow (하중흐름을 통한 대형구조실험용 반력시설물의 설계)

  • Lee, Sung-Eun;Ko, Dong-Woo
    • Journal of Korean Association for Spatial Structures
    • /
    • v.16 no.2
    • /
    • pp.69-77
    • /
    • 2016
  • The purpose of this study is to present a method that can estimate the height of reaction facilities for large structural experiment through load flow as primary design procedure. The characteristic of the load transmission according to the type of experiment was analyzed to obtain tensile and compressive forces occurring on the reaction facilities. Strong walls that are affected by the bending moment is applied the post-tensioning method, and the strong floor under the control of the tension and compression is designed in accordance with the load flow. And the optimum cross-section of the reaction facilities was obtained by comparing the stresses of the tensile stress and crack the concrete. Through validating elastic analysis, the design results were satisfied a given design conditions.