• Title/Summary/Keyword: Reaction bonding

Search Result 386, Processing Time 0.029 seconds

A Study on the Polymerization of $\varepsilon$-Caprolactame in [RCOOH]-Montmorillonite Intercalations-Complex ([RCOOH]-Montmorillonite 층간화합물내에서의 $\varepsilon$-Caprolactame의 고분자화반응에 관한 연구)

  • 조성준
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.2
    • /
    • pp.151-158
    • /
    • 1999
  • $\varepsilon$-Caprolactame as organic monomer was intercalated in the interlayer space of montmorillonite and polymerized by polymerization reaction so that the inorganic polymer and organic polymer could be combined each other by chemical bonding. The results of X-ray and IR analysis showed that the polymerization reaction of $\varepsilon$-caprolactame between the interlayer spaces has been performed sucessfully. In order to study polymeric reaction product in detail we have isolated the polymerized material from the interlayer space and analyzed it by X-ray diffractometer and IR-Spectrocopy. The comparison of these results with them of the analyses for thee pure polymer which has been synthesized by polymeric reaction of $\varepsilon$-carolactame without montmorillonite showed that the obtained both polymeric materials are the same compounds.

  • PDF

Characteristics of the Surface Coating Layer of Ti5Si3 Intermetallic Compound Obtained by Shock Compaction and Reaction Synthesis Through Underwater Shock Compression (수중충격파를 이용하여 충격고화와 반응합성으로 제조된 Ti5Si3 금속간 화합물의 표면코팅 층의 특성에 관한 연구)

  • Lee, Sang-Hoon
    • Journal of Powder Materials
    • /
    • v.15 no.2
    • /
    • pp.101-106
    • /
    • 2008
  • The objective of the present study is to investigate the increase in the functional characteristics of a substrate by the formation of a thin coating layer. Thin coating layers of $Ti_5Si_3$ have high potential because $Ti_5Si_3$ exhibits high hardness. Shock induced reaction synthesis is an attractive fabrication technique to synthesize uniform coating layer by controlling the shock wave. Ti and Si powders to form $Ti_5Si_3$ using shock induced reaction synthesis, were mixed using high-energy ball mill into small scale. The positive effect of this technique is highly functional coating layer on the substrate due to ultra fine substructure, which improves the bonding strength. These materials are in great demand as heat resisting, structural and corrosion resistant materials. Thin $Ti_5Si_3$ coating layer was successfully recovered and showed high Vickers' hardness (Hv=1183). Characterization studies on microstructure revealed a fairly uniform distribution of powders with good interfacial integrity between the powders and the substrate.

Adsorption and Dissociation Reaction of Carbon Dioxide on Pt(111) and Fe(111) Surface: MO-study

  • Jo, Sang Jun;Park, Dong Ho;Heo, Do Seong
    • Bulletin of the Korean Chemical Society
    • /
    • v.21 no.8
    • /
    • pp.779-784
    • /
    • 2000
  • Comparing the adsorption properties and dissociation on a Pt(111) iththat ona Fe(111) surface, we have con-sidered seven coordination modes of the adsorbed binding site: $di-${\sigma}$${\Delta}$\mu\pi/\mu$, 1-fbld,2-fold, and 3-fbld sites. On the Pt(111) surface, t he adsorbed binding site of carbon dioxide was strongestat the1-fold site and weakest at the $\pi/\mu-site.$ The adsorbed binding site on the Fe(111) surface was strongest at the di-бsite and weakest at the 3-fold site. We have found that the binding energy at each site that excepted 3-fold on the Fe(111) surface was stronger than the binding energy on the Pt(111) surface and that chemisorbed $CO_2bends$ because of metal mixing with $2\piu${\rightarrow}$6a_1CO_2orbital.$, The dissociation reaction occured in two steps, with an intermediate com-plex composed of atomic oxygen and ${\pi}bonding$ CO forming. The OCO angles of reaction intermediate com-plex structure for the dissociation reaction $were115^{\circ}Con$ the Pt(111), and $117^{\circ}C$ on the Fe(111) surface. We have found that the $CO_2dissociation$ rea11) surface proceeds easily,with an activationenergy about 0.2 eV lower than that on the Pt(111) surface.

Synthesis of Hollandite Powders as a Nuclear Waste Ceramic Forms by a Solution Combustion Synthesis (연소합성법을 이용한 방사성폐기물 고화체 Hollandite 분말 합성)

  • Choong-Hwan Jung;Sooji Jung
    • Korean Journal of Materials Research
    • /
    • v.33 no.10
    • /
    • pp.385-392
    • /
    • 2023
  • A solution combustion process for the synthesis of hollandite (BaAl2Ti6O16) powders is described. SYNROC (synthetic rock) consists of four main titanate phases: perovskite, zirconolite, hollandite and rutile. Hollandite is one of the crystalline host matrices used for the disposal of high-level radioactive wastes because it immobilizes Sr and Lns elements by forming solid solutions. The solution combustion synthesis, which is a self-sustaining oxi-reduction reaction between a nitrate and organic fuel, generates an exothermic reaction and that heat converts the precursors into their corresponding oxide products in air. The process has high energy efficiency, fast heating rates, short reaction times, and high compositional homogeneity. To confirm the combustion synthesis reaction, FT-IR analysis was conducted using glycine with a carboxyl group and an amine as fuel to observe its bonding with metal element in the nitrate. TG-DTA, X-ray diffraction analysis, SEM and EDS were performed to confirm the formed phases and morphology. Powders with an uncontrolled shape were obtained through a general oxide-route process, confirming hollandite powders with micro-sized soft agglomerates consisting of nano-sized primary particles can be prepared using these methods.

A Novel One-Pot Synthesis of Quinoxaline Derivatives in Fluorinated Alcohols

  • Khaksar, Samad;Rostamnezhad, Fariba
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.8
    • /
    • pp.2581-2584
    • /
    • 2012
  • Hexafluoroisopropanol (HFIP) is explored as an effective medium for the synthesis of quinoxaline derivatives in high yields at room temperature. The solvent (HFIP) can be readily separated from reaction products and recovered in excellent purity for direct reuse.

Palladium(II) Aryloxides of Pd(2,6-(CH2NMe2)2C6H3)(OC6H4-X-p) (X = Me, NO2): Synthesis, Property and Reactivity towards Diphenyliodium Chloride

  • Jung, Hyun-Sang;Park, Yun-Sik;Seul, Jung-Min;Kim, Jong-Sook;Lee, Ho-Jin;Park, Soon-Heum
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.8
    • /
    • pp.2711-2716
    • /
    • 2011
  • para-Substituted phenoxide derivatives of Pd(II) having an NCN pincer, Pd(NCN)($OC_6H_4$-p-X) (NCN = 2,6-$(CH_2NMe_2)_2C_6H_3$; X = $NO_2$ (1), Me (2)) were prepared by the reaction of Pd(NCN)($OSO_2CF_3$) with equi-molar amount of $NaOC_6H_4$-p-X. Treatment of Pd(NCN)($OSO_2CF_3$) with an excess amount of $NaOC_6H_4$-p-Me affords the hydrogen-bonding adduct complex 3 ($2{\cdot}HOC_6H_4$-p-Me). Complex 3 can also be obtained from benzene solution of 2 in the presence of free $HOC_6H_4$-p-Me. Complex 1 does not undergo adduct formation with $HOC_6H_4-p-NO_2$ neither from metathesis reaction of Pd(NCN)($OSO_2CF_3$) with an excess amount of $NaOC_6H_4-p-NO_2$ nor from treatment of 1 with free $HOC_6H_4-p-NO_2$. Complex 3 undergoes fast exchange of the coordinated p-cresolate with the hydrogen-bonding p-cresol. Complex 2 undergoes ${\sigma}$-ligand exchange reaction with $HOC_6H_4-p-NO_2$ to give 1. The exchange reaction, however, is irreversible as readily anticipated from their respective $pK_a$ values of the phenol derivatives. Reaction of 2 with diphenyliodium chloride quantitatively produced Pd(NCN)Cl and PhI along with liberation of O-phenylated product $PhOC_6H_4$-p-Me which was identified by GC/MS spectroscopy.

A study on the development of Ti-Cu-Ni-Si insert metal for Ti alloys (Ti합금 접합용 Ti-Cu-Ni-Si계 삽입금속의 개발에 관한 연구)

  • 김경미;우인수;강정윤;이상래
    • Journal of Welding and Joining
    • /
    • v.14 no.1
    • /
    • pp.47-56
    • /
    • 1996
  • The purpose of this study is to develope an insert metal which can be brazed at lower temperature than the conventionally used insert metal and provide higher strength joint than base metal. In the review of binary phase diagram concerning Ti, Cu and Ni resulted in the discovery of Si having eutectic composition with them. The microstructure and the distribution of elements in reaction zone between CP Ti and insert metal were investigated by Optical Microscopy, SEM/EDX, EPMA, X-RAY. The newly developed insert metal is Ti-15wt%Cu-18wt%Ni-2wt%Si, which can yield the lower brazing temperature(1183K) compared with the conventional Ti-Cu-Ni system insert metal. The joints with this insert metal had tensile strength of 385MPa in the bonding temperature range of 1183K to 1243K.

  • PDF

Synthesis and Bonding Properties of Phenol·Resorcinol·Formaldehyde Resin Adhesives (페놀·레조르시놀 수지의 합성과 접착성능)

  • Roh, Jeang-Kwan
    • Journal of the Korean Wood Science and Technology
    • /
    • v.21 no.1
    • /
    • pp.51-58
    • /
    • 1993
  • The phenol resorcinol formaldehyde resin (PRF) adhesives which are curing at ambient temperature for structural purposes were synthesized. A PRF resin is produced according to the two-stage reaction system. In first stage, a low-condensed resol or methylolated phenol were prepared from phenol by reaction with a formaldehyde in alkaline condition. The molar ratio of phenol to formaldehyde was 1.0~1.4. And in second-stage, resorcinol was added to combine with the methylol group of a low-condensed resol(R/P molar ratio 0.3). The glue-joint strength, pot-life and workability of this synthetic PRF resin were superior to conventional ambient temperature setting adhesives such as oilic urethane or water based polymer-isocyanate resin for wood adhesives.

  • PDF

Functional Layer-by-Layer Assembled Multilayers Based on Nucleophilic Substitution reaction

  • Jo, Jin-Han
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.9.2-9.2
    • /
    • 2011
  • Ultrathin polyelectrolyte (PE) multilayer films prepared by the versatile layer-by layer (LbL) assembly method have been utilized for the preparation of light-emitting diodes, electrochromic, membrane, and drug delivery system, as well as for selective area patterning and particle surface modification because the various materials with specific properties can be inserted into the film with nano-level thickness irrespective of the size or the shape of substrate. Since the introduction of the LbL technique in 1991 by Decher and Hong, various hydrophilic materials can be inserted within LbL films through complementary interactions (i.e., electrostatic, hydrogen-bonding or covalent interaction). In this study, it is demonstrated that LbL SA multilayer films based on nucleophilic substitution reaction can allow the preparation of the highly efficient magnetic and/or optical films and nonvolatile memory devices.

  • PDF

Fabrication and Interface Properties of TiNi/6061Al Composite (TiNi 형상기억합금을 이용한 복합재료의 제조 및 계면 특성)

  • Kim, Sun-Guk;Lee, Jun-Hui
    • Korean Journal of Materials Research
    • /
    • v.9 no.4
    • /
    • pp.419-427
    • /
    • 1999
  • TiNi shape memory alloy was shape memory heat-treated and investigated its mechanical properties with the variation of prestrain. Also 6061 Al matrix composites with TiNi shape memory alloy fiber as reinforcement have been fabricated by Permanent Mold Casting to investigate the microstructures and interface properties. Yield stress of TiNi wire was the most high in the case of before heat-treatment and then decreased as increasing heat-treatment time. In each heat-treatment condition, the yield stress of TiNi wire was not changed with increasing the amount of prestrain. The interface bonding of TiNi/6061Al composite was fine. There was a 2$\mu\textrm{m}$ thickness of diffusion reaction layer at the interface. We could find out that this diffusion reaction layer was made by the mutual diffusion. The diffusion rate from Al base to TiNi wire was faster than that of reverse diffusion and the amount of the diffusion was also a little more than that of reverse.

  • PDF