• Title/Summary/Keyword: Reaction Wheels

Search Result 55, Processing Time 0.027 seconds

Attitude Control System Design & Verification for CNUSAIL-1 with Solar/Drag Sail

  • Yoo, Yeona;Kim, Seungkeun;Suk, Jinyoung;Kim, Jongrae
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.17 no.4
    • /
    • pp.579-592
    • /
    • 2016
  • CNUSAIL-1, to be launched into low-earth orbit, is a cubesat-class satellite equipped with a $2m{\times}2m$ solar sail. One of CNUSAIL's missions is to deploy its solar sail system, thereby deorbiting the satellite, at the end of the satellite's life. This paper presents the design results of the attitude control system for CNUSAIL-1, which maintains the normal vector of the sail by a 3-axis active attitude stabilization approach. The normal vector can be aligned in two orientations: i) along the anti-nadir direction, which minimizes the aerodynamic drag during the nadir-pointing mode, or ii) along the satellite velocity vector, which maximizes the drag during the deorbiting mode. The attitude control system also includes a B-dot controller for detumbling and an eigen-axis maneuver algorithm. The actuators for the attitude control are magnetic torquers and reaction wheels. The feasibility and performance of the design are verified in high-fidelity nonlinear simulations.

Development of the Pulsed Plasma Thruster (PPT) for Science and Technology Satellite-2 (STSAT-2)

  • Shin, G.H.;Nam, M.R.;Cha, W.H.;Lim, J.T.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.352-355
    • /
    • 2005
  • This paper describes an engineering model development of a pulsed plasma thruster, which is capable of an impulse bit of 20uNs and a specific impulse of 800s. The solid fuel which is Teflon allows for a self-contained, inert and stable propellant system. And, the PPT technology makes it possible to consider a revolutionary attitude control system (ACS) concept providing stabilization and pointing accuracies previously obtainable only with reaction wheels, with reduced mass and power requirements.

  • PDF

Spacecraft attitude control using quanternion parameters

  • Yoon, Hyungjoo;Tahk, Minjea
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.115-118
    • /
    • 1995
  • This paper present an attitude control using quaternions as feedback attitude errors. The Euler's eigenaxis rotation provides the shortest angular path between two attitudes. This eigenaxis rotation can be achieved by using quaternions since quaternions are related with the eigenaxis. The suggested controller uses error quaternions and body angular rates and generates a decoupling control torque that counteracts the natural gyroscopic coupling torque. The momentum dumping strategy using the earth magnetic field is also applied in this paper to unload the angular momentum of the reaction wheels used in the attitude control.

  • PDF

Synthesis and Shuttling Behavior of Rotaxanes Consisting of Crown Ether Wheel and Disulfide Dumbbell with Two Ammonium Centers

  • Furusho, Yoshio;Sanno, Ryoko;Oku, Tomoya;Takata, Toshikazu
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.11
    • /
    • pp.1641-1644
    • /
    • 2004
  • Several [2]- and [3]rotaxanes bearing some functional groups on their wheel components and spacers with different lengths between two ammonium centers on their dumbbell components were prepared in good yields from dibenzo-24-crown-8-ether derivatives and dumbbell-shaped bis(sec-ammonium salt)s having a centrally located disulfide linkage, by utilizing the reversible thiol-disulfide interchange reaction. The shuttling behaviors of the [2]rotaxanes were investigated by $^1H$ NMR by use of the spin polarization transfer-selective inversion recovery technique. It was found that the change in spacer length in the axle resulted in a drastic change in shuttling rate of the [2]rotaxanes, although the introduction of the functional groups to the wheels did not affect the shuttling behavior at all.

Fundamental Experiments for Attitude Control of a Low Earth Orbit Satellite Using Ion Drag

  • Ohue, Miho;Koizumi, Hiroyuki;Kuninaka, Hitoshi;Nishida, Michio
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.561-565
    • /
    • 2008
  • Generally, reaction wheels or thrusters are used for attitude control of a satellite. There is a potential method for the attitude control utilizing the plasma flow on the Low Earth Orbit. In the present study, experiments which simulate attitude control of a Low Earth Orbit Satellite using the ionosphere were conducted. In this experiment, a plasma flow was generated by a steady-state Hall type accelerator. However it is known that the Hall type accelerator, which is used as plasma source, produces a torque around its axis called "swirl torque". This torque would affect the attitude control in the above-mentioned experiments. First of all, we conducted the measurement of the swirl torque. Secondly, experiments using a satellite model with negative electrodes were conducted. The negative electrodes generated torque around the axis, and controlled the attitude of the satellite model by changing the applied voltage.

  • PDF

Dynamic Control Allocation for Shaping Spacecraft Attitude Control Command

  • Choi, Yoon-Hyuk;Bang, Hyo-Choong
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.8 no.1
    • /
    • pp.10-20
    • /
    • 2007
  • For spacecraft attitude control, reaction wheel (RW) steering laws with more than three wheels for three-axis attitude control can be derived by using a control allocation (CA) approach.1-2 The CA technique deals with a problem of distributing a given control demand to available sets of actuators.3-4 There are many references for CA with applications to aerospace systems. For spacecraft, the control torque command for three body-fixed reference frames can be constructed by a combination of multiple wheels, usually four-wheel pyramid sets. Multi-wheel configurations can be exploited to satisfy a body-axis control torque requirement while satisfying objectives such as minimum control energy.1-2 In general, the reaction wheel steering laws determine required torque command for each wheel in the form of matrix pseudo-inverse. In general, the attitude control command is generated in the form of a feedback control. The spacecraft body angular rate measured by gyros is used to estimate angular displacement also.⁵ Combination of the body angular rate and attitude parameters such as quaternion and MRPs(Modified Rodrigues Parameters) is typically used in synthesizing the control command which should be produced by RWs.¹ The attitude sensor signals are usually corrupted by noise; gyros tend to contain errors such as drift and random noise. The attitude determination system can estimate such errors, and provide best true signals for feedback control.⁶ Even if the attitude determination system, for instance, sophisticated algorithm such as the EKF(Extended Kalman Filter) algorithm⁶, can eliminate the errors efficiently, it is quite probable that the control command still contains noise sources. The noise and/or other high frequency components in the control command would cause the wheel speed to change in an undesirable manner. The closed-loop system, governed by the feedback control law, is also directly affected by the noise due to imperfect sensor characteristics. The noise components in the sensor signal should be mitigated so that the control command is isolated from the noise effect. This can be done by adding a filter to the sensor output or preventing rapid change in the control command. Dynamic control allocation(DCA), recently studied by Härkegård, is to distribute the control command in the sense of dynamics⁴: the allocation is made over a certain time interval, not a fixed time instant. The dynamic behavior of the control command is taken into account in the course of distributing the control command. Not only the control command requirement, but also variation of the control command over a sampling interval is included in the performance criterion to be optimized. The result is a control command in the form of a finite difference equation over the given time interval.⁴ It results in a filter dynamics by taking the previous control command into account for the synthesis of current control command. Stability of the proposed dynamic control allocation (CA) approach was proved to ensure the control command is bounded at the steady-state. In this study, we extended the results presented in Ref. 4 by adding a two-step dynamic CA term in deriving the control allocation law. Also, the strict equality constraint, between the virtual and actual control inputs, is relaxed in order to construct control command with a smooth profile. The proposed DCA technique is applied to a spacecraft attitude control problem. The sensor noise and/or irregular signals, which are existent in most of spacecraft attitude sensors, can be handled effectively by the proposed approach.

The Implementation of the Speed Measurement Board for the Reaction Wheel on the LEO Satellite using the T, M-Method (T-방식과 M-방식을 이용한 저궤도위성용 반작용 휠의 속도측정보드 설계)

  • Lee, Jae-Nyeung;Park, Sung-Hun;Heu, Su-Jin;Lee, Yun-Ki
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.9
    • /
    • pp.827-832
    • /
    • 2012
  • In this paper, we will design the speed measurement board of LEO Satellite's reaction wheel which has two speed measuring methods as M-Method type and T-Method type. therefore we can use the advantage of two methods. and we will verify the availability of design on the on-board computer at the real LEO Satellite(KOMPSAT-3). In the reaction wheels satellite that can change the satellite's attitude is one of the leading drivers by the rotational inertia of the motor will perform attitude control. Reaction methods for detecting wheel rotation speed generated during a certain period T internal reaction wheel tacho pulse counting M-Method to detect wheel speed and wheel tacho pulses are generated by measuring the time between the detection rate can be divided into T-Method. M-method is simple to implement and benefit measurement time is constant, but slow fall in the velocity measurement accuracy is a disadvantage. In contrast, the time between tacho pulses to measure the T-Method to measure the precise speed at low speed and to measure the time delay is small, has the advantage. However, this method also in the actual implementation and the complexity of the operation at different speeds depending on the speed of operation has the disadvantage.

Effects of VHP Positions on the Steering Stability of Agricultural Tractors(I) -Derivation of Safe Region for VHP Locations- (가상(假想) 히치점의 위치(位置)가 트랙터의 조향(操向) 안정성(安定性)에 미치는 영향(影響)(I) -가상(假想) 히치점의 안전(安全) 영역(領域)에 대한 이론적(理論的) 고찰(考察)-)

  • Shin, S.I.;Kim, K.U.
    • Journal of Biosystems Engineering
    • /
    • v.16 no.2
    • /
    • pp.118-123
    • /
    • 1991
  • This study was conducted to investigate the influences of virtual hitch point (VHP) positions of a three-point hitch on the steering stability of agricultural tractors. The VHP locations were determined analytically from the linkage geometry and implement posture during the normal tillage operations. The maximum force applicable to the VHP was also determined under the given soil and power constraints. From these possible ranges of the VHP locations, a safe region for steering control was determined theoretically by using maximum applicable forces for the given tractor and implement combinations. With VHP positions within the safe region, tractor can maintain the minimum soil reaction forces, assumed 20% of the total tractor weight in this study, at the front wheels which is required for the steering control under the maximum traction conditions. This paper mainly concerns with mathematical developments for the determination of VHP locations and maximum forces applicable to the VHP for steering control. Experimental validation of the theory developed here follows as the second part of this study.

  • PDF

Synthesis of Titanium Carbide Nano Particles by the Mechano Chemical Process

  • Ahn, In-Shup;Park, Dong-Kyu;Lee, Yong-Hee
    • Journal of Powder Materials
    • /
    • v.16 no.1
    • /
    • pp.43-49
    • /
    • 2009
  • Titanium carbides are widely used for cutting tools and grinding wheels, because of their superior physical properties such as high melting temperature, high hardness, high wear resistance, good thermal conductivity and excellent thermal shock resistance. The common synthesizing method for the titanium carbide powders is carbo-thermal reduction from the mixtures of titanium oxide($TiO_2$) and carbon black. The purpose of the present research is to fabricate nano TiC powders using titanium salt and titanium hydride by the mechanochemical process(MCP). The initial elements used in this experiment are liquid $TiCl_4$(99.9%), $TiH_2$(99.9%) and active carbon(<$32{\mu}m$, 99.9%). Mg powders were added to the $TiCl_4$ solution in order to induce the reaction with Cl-. The weight ratios of the carbon and Mg powders were theoretically calculated. The TiC and $MgCl_2$ powders were milled in the planetary milling jar for 10 hours. The 40 nm TiC powders were fabricated by wet milling for 4 hours from the $TiCl_4$+C+Mg solution, and 300 nm TiC particles were obtained by using titanium hydride.

Study on Satellite Vibration Control Using Adaptive Algorithm

  • Oh, Choong-Seok;Oh, Se-Boung;Bang, Hyo-Choong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.2120-2125
    • /
    • 2005
  • The principal idea of vibration isolation is to filter out the response of the system over the corner frequency. The isolation objectives are to transmit the attitude control torque within the bandwidth of the attitude control system and to filter all the high frequency components coming from vibration equipment above the bandwidth. However, when a reaction wheels or control momentum gyros control spacecraft attitude, vibration inevitably occurs and degrades the performance of sensitive devices. Therefore, vibration should be controlled or isolated for missions such as Earth observing, broadcasting and telecommunication between antenna and ground stations. For space applications, technicians designing controller have to consider a periodic vibration and disturbance to ensure system performance and robustness completing various missions. In general, past research isolating vibration commonly used 6 degree order freedom isolators such as Stewart and Mallock platforms. In this study, the vibration isolation device has 3 degree order freedom, one translational and two rotational motions. The origin of the coordinate is located at the center-of-gravity of the upper plane. In this paper, adaptive notch filter finds the disturbance frequency and the reference signal in filtered-x least mean square is generated by the notch frequency. The design parameters of the notch filter are updated continuously using recursive least square algorithm. Therefore, the adaptive filtered-x least mean square algorithm is applied to the vibration suppressing experiment without reference sensor. This paper shows the experimental results of an active vibration control using an adaptive filtered-x least mean squares algorithm.

  • PDF