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Spacecraft Attitude Control Using Quaternion Parameters
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Abstracts This paper presents an attitude control method using quaternions as feedback attitude errors. The
Fuler’s cigenaxis rotation provides the shortest angular path between two attitudes. This eigenaxis rotation
can be achieved by using quaternions since quaternions are related with the eigenaxis. The suggested controller
uses error quaternions and body angular rates and generates a decoupling control torque that counteracts the
natural gyroscopic coupling torque. The momentum dumping strategy using the earth magnetic ficld is also
applied in this paper to unload the angular momentum of the reaction wheels used in the attitude control.
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1 Introduction

The problem of large angle reorientation/slew maneuvers
is of considerable interest since many modern and fu-
ture spacecrafts including LEO(Low Earth Orbit) satel-
lites need large angle maneuvers for their variable mis-
sions. Conventional single-axis small angle feedback con-
trols may not be adequate for this three-axis large angle
maneuvers[1].

There have been many studies about large angle ma-
neuvers. Among them, control algorithms using quater-
nion are now commonly applied since the quaternion
method has no singularity and is well suited for onboard
real-time computation. Moreover, as shown in this paper,
quaternion can be used in eigenaxis rotation very easily.

According to the Euler’s rotation theorem, the
eigenaxis rotation is the minimum path-angle rota-
tion.Although this rotation is not a time-optimal rotation
but is considered to be generally "near” the time-optimal
rotation[2]. The maneuver time of conventional succes-
sive rotations about each body axis is longer than that of
a single maneuver about the eigenaxis[3].

The spacecraft also requires controllers that dump the
angular momentum of reaction wheels or control momen-
tum gyro by using gravity gradient, aerodynamic forces,
earth magnetic fields and so on.

In this paper, a control algorithm for the eigenaxis
maneuver with error quaternion feedback is proposed and
the momentum dump of reaction wheels using earth mag-
netic field is considered.

2 Eigenaxis Rotations via Error
Quaternion Feedback
This section presents a control algorithm for eigenaxis ro-

tation using error quaternion feedback. An ideal body-
fixed control torquer is assumed.
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2.1 Euler’s Equation of Motion

In general cases in which the body-fixed control axes do
not coincide with the principal axes of inertia, the Euler’s
equation which describes the rotational motion of a rigid
body about body-fixed axes with origin at the center of
mass can be written as [3]

Jw=QJw+Ta+ T, 1)
where w = [p,¢,7]T is the angular velocity vector of
the rigid body,Te = [T1,T2,T:]” is the attitude control
torque vector, Ty, is the angular momentum dump con-

trol torque vector, J is the inertia matrix, and 2 = [~wx]
is a skew-symmetric matrix defined by

0 —-r ¢
Q = - r 0 —p
- p» O

It is assumed that the angular velocity is measured by
some devices.

)

2.2 Quaternions

When two coordinate systems (X,Y, Z) and (X', Y’,Z")
are related as shown in Fig.1, the quaternion that ex-
presses the coordinate transformation from coordinate
systems (X,Y, Z) to (X',Y’, Z') is defined as [4]

go = cCo8 %

@1 = cosasin g

g2 = cosfsin -'21 3)
gs = cosvsin %

The direction of the eigenaxis is specified by ¢1,¢2 and
gs.



Axis of rotation
(Eigeuaxis or Fuleraxis)

Fig. 1: (X,Y,2Z) and (X',Y’, Z') coordinates

The kinematic differential equations of the quaternion
can be written as

do 0 —p —q -r go

0 11 p 0 r —¢ o
== 4
gz 2 g -r 0 p 'p) )
q3 r g —-p O /)

The control error quaternion expresses the coordi-
nate transformation from the current attitude to the com-
manded attitude and can be written as [1]

geo qdco gc1 qc2 [ X3 g0
ge1 _ —qc1 qco ge3  —qc2 qi
ge2 —qc2 —(qc3 qco [/ 25 q2
ge3 —qc3 g2  —qal qco q3

where gy, gci and ¢.i(i = 0, 1, 2, 3) are quaternions that ex-
press current attitude, commanded attitude and attitude
error, respectively. For small attitude changes from the
inertial reference frame (¢1 = ¢2 = ¢3 ~ 0,90 ~ 1), we
have an approximation of Eq.(4) such that
2¢s=r (6)
Hence, the angular body rates can be used for the rate
feedback of quaternions.

The feedback controller proposed in this paper con-
sists of linear error-quaternion feedback, linear body-rate
feedback, and a nonlinear body-rate feedback term that
counteracts the gyroscopic coupling torque[3):

21 =p, 2§2=gq,

Ta=—-QJw— Dw— Kqe (7)
where D and K are 3 X 3 gain matrix and q. =
[ge1, ez, ges]”. For simplicity, it is assumed that qe = q
or the commanded quaternion is {1,0,0,0]7.

2.3 [Eigenaxis Rotation

The Euler’s rotation theorem says that a rotation about
eigenaxis gives the shortest path angle between two orien-
tations. This can be achieved by using a quaternion feed-
back of the form kJq, where k is scalar and J the inertia
matrix. Since the vector q coincides with the spacecraft
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eigenaxis, the control torque kJq produces an eigenaxis
rotation. Wie et al have shown that an eigenaxis rotation
for a rest-to-rest reorientation maneuver can be achieved
with gain matrices D = dJ and K = kJ (d and k are
scalar)[3].

3 Moment Dump via Magnetic
Torquer "

To attain high pointing accuracy, a control system em-
ploying three or more reaction wheels or control moment
gyros is favored. However, the secular component of ex-
ternal disturbance torques can lead to the saturation of
the momentum capacity of the reaction wheels, so the
momentum dump systems using torques such as magnetic
control torques are needed to dump excess reaction wheel
angular momentum.

3.1 Magnetic Torquer

A magnetic moment M generated via electromagnets on
board the spacecraft causes a magnetic control torque T,
given in body frame by

Tm =M xB (8)

where B is the Earth’s magnetic field vector.

For a planar, wire loop of N turns enclosing an area
A through which a current I is flowing, the magnetic mo-
ment M is given by

M= NIAn 9)

where n is a unit vector normal to the plane of the loop[5].

A magnetic torquer cannot produce a torque along the
direction of the magnetic field vector. To generate con-
trol torques in any arbitrary directions, three magnetic
coils orthogonal to each other are required. The Earth’s
magnetic field vector varies with the position of a satel-
lite, so there is needed a magnetometer which senses the
magnetic field.

3.2 Momentum Dump Algorithm

The attitude control system has a time constant on the
order of seconds to minutes and the momentum dump
control is on a scale of minutes or possibly hours. Jus-
tified by this difference in bandwidth, the torque by mo-
mentum dump control system can be considered as per-
turbations to the attitude control system and vice versa
(See Fig.2)[6].

In the case of zero-bias reaction wheel, the angular
momentum of the reaction wheel h is written as

h=-T. (10)

A momentum dump control law seeks a torque T,
that makes the angular momentum h zero. This momen-
tum dump strategy proposed in the 1960’s by White et al
can be written as[8] :

—knB xh (11)
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Fig. 2: Attitude and momentum dump control sys-
tems

It is easy to show that h converges to zero{7][8].

3.3 Earth Magnetic Model

Although a magnetometer is used to measure the earth
magnetic field vector in practice, calculation of magnetic
field vector is needed for some purposes such as simula-
tion.
The Earth’s magnetic field vector can be expressed as
the gradient of a scalar potential V'
B=-VV (12)
The scalar potential V' can be expressed as a spherical
harmonic function:

k n
V0,9 =ad (2)™ D (6 cos me+hT sin mé) P (6)
n=1 m=0
(13)

where a is the equatorial radius of the Earth and r,f and
¢ are the geocentric distance, coelevation, and east lon-
gitude from Greenwich. g’ and A}’ are called Gaus-
sian coefficients and P;*(0) are the associated Legen-
dre functions{5]. The Gaussian coefficients of the Inter-
national Geomagnetic Reference Field (IGRF(1990)) is
shown in Table 1.

4 Simulation

An asymmetric rigid spacecraft with the following inertia
matrix is considered.

1000 100 —200
J=| 100 2000 300 |Kg-m?
—200 300 3000

The initial attitude Euler angles at ¢t = 0 are given as

0o = —30°, o = 60°, ¢o = 80°
The feedback gains in this simulation are chosen as

K=005J, D=03J kn=23x10
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Table 1: IGRF Gaussian Coefficients for Epoch 1990.
nim g(nT) h(nT) | g(n'l'/yr) | h(n'T'/yr)
1 0 { -29775.0 - 18.0 -
1 1 -1851.0 5411.0 10.6 -16.1
2 0 -2136.0 - -12.9 -
2 1 3058.0 | -2278.0 2.4 -15.8
2 2 1693.0 -380.0 0.0 -13.8
310 1315.0 - 3.3 -
3 1 -2240.0 -287.0 -6.7 4.4
31 2 1246.0 293.0 0.1 1.6
3 3 807.0 -348.0 -5.9 -10.6
4 0 939.0 - 0.5 -
4 1 782.0 248.0 0.6 2.6
4| 2 324.0 | -240.0 -7.0 1.8
4 3 -423.0 87.0 0.5 3.1
4] 4 142.06 | -299.0 -5.5 -1.4

Fig.3 thru 6 show the simulation results. The time
histories of Euler angles and quaternions (Figs.3 and 4)
show that the proposed controller provides large angle ma-
neuvers. Especially, Fig.5 indicates that the quaternion
vector q = [¢1,92,¢3]7 coincides with the eigenaxis and
the ratios of quaternions remain nearly constant (without
momentum dump control, in fact, the ratios are perfectly
constants.). This means that the control law provides the
eigenaxis rotation.

Fig.6 shows the effect of the momentum dump control.
The angular momentums of reaction wheels remain some
nonzero values without momentum dump control but the
momentums approach to zero where the momenum dump
contro] is applied.

5 Conclusions

We considered control algorithms for large angle maneu-
vers about eigenaxis and angular momentum dump. Eige-
naxis rotations are simply achieved by error quaternion
feedback. This rotation is the minimem path-angle rota-
tion and can be applied in many cases where large angle
maneuvers are needed.
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Fig. 3: Time histories of Euler angles
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Fig. 4: Time histories of quaternions

118

o
3
040]
/ j.n
00|
L] 00 020
Qustesmion Q1 Quaternion Q2
400
g
040
I
0.0¢
0
Quatemion O3

150.0

Angular Momentum of RW (Kg m? /sec)

Angular Momentum of RW (Kg m” /sec)

- T ——T Y ——— T T T STCT Oy W S
1oo.o‘

Time(sec)
(b) W/ momentum dump

Fig. 6: Angular momentum of R/W



