• Title/Summary/Keyword: Reaction Speed

Search Result 791, Processing Time 0.023 seconds

Effect of Walking Speed on Angles of Lower Extremity and Ground Reaction Force in the Obese (보행속도가 비만인의 하지관절각과 지면반발력에 미치는 영향)

  • Kim, Tae-Wan
    • Korean Journal of Applied Biomechanics
    • /
    • v.16 no.4
    • /
    • pp.83-94
    • /
    • 2006
  • The purpose of this study is to elucidate how walking speed influences on change of angles of lower extremity and ground reaction force in normal and obese people. One group with normal body weight who were experimented at a standard speed of 1.5m/s and the other obese group were experimented at two different walking speeds (standard speed of 1.5m/s and self-selected speed of 1.3m/s). We calculated angles of lower extremity and ground reaction force during stance phase through video recording and platform force measuring. When the obese group walked at the standard speed, dorsi-flexion angle of ankle got bigger and plantar-flexion angle of ankle got smaller, which were not statistically significant. There was no significant difference of knee joint angles between normal and obese group at the same speed walking but significant post hoc only for the first flexion of knee joint in obese group. $F_z1$ was bigger than $F_z3$ in vertical axis for ground reaction force in both groups at the standard speed walking and the same force value at self-selected speed in obese group. $F_y3$ was always bigger than $F_y1$ in anterior-posterior axis in both groups.

The Research about Engine Speed change Effect on HCCI Engine Combustion by Numerical Analysis (엔진회전속도의 변화가 HCCI엔진연소에 미치는 영향에 관한 수치해석 연구)

  • Lim, Ock-Taeck
    • Journal of ILASS-Korea
    • /
    • v.16 no.3
    • /
    • pp.126-133
    • /
    • 2011
  • In HCCI Engine, combustion is affected by change of compression speed corresponding to engine speed. The purpose of this study is to investigate the mechanism of influence of engine speed on HCCI combustion characteristics by using numerical analysis. At first, the influence of engine speed was shown. And then, in order to clarify the mechanism of influence of engine speed, results of kinetics computations were analyzed to investigate the elementary reaction path for heat release at transient temperatures by using contribution matrix. In results, as engine speed increased, in-cylinder gas temperature and pressure at ignition start increased. And ignition start timing was retarded and combustion duration was lengthened on crank angle basis. On time basis, ignition start timing was advanced and combustion duration was shortened. High engine speed showed higher robustness to change of initial temperature than low engine speed. Because of its high robustness, selecting high engine speed was efficient for keeping stable operation in real engine which include variation of initial temperature by various factors. The variation of engine speed did not change the reaction path. But, as engine speed increased, the temperature that each elementary reaction would be active became high and reaction speed quicken. Rising the in-cylinder gas temperature of combustion start was caused by these gaps of temperature.

The Movement of Foot and the Shift of Ground Reaction Force in Batters according to the Ball Speed Increase (투구 속도 증가에 따른 타자의 발 움직임과 지면 반력의 변화)

  • Lee, Young-Suk;Eun, Seon-Deok
    • Korean Journal of Applied Biomechanics
    • /
    • v.14 no.3
    • /
    • pp.191-202
    • /
    • 2004
  • The batting performance in baseball is a repetitive movement. In order to make the stabilization of posture and the efficient shift of body weight, both the range of stance and stride are important. The previous studies explained that the consistent stride which included the amount of time, stance, and direction were needed. However, the batting performance is frequently changed according to the several speed of ball. Therefore, this study was to analyze the reaction time, the range of stance, the change of stride, and the change of GRF during the batting movement in three kinds of ball speed (120km/h, 130km/h, & 140km/h). Seven elite players are participated in this study. 1. The reaction time of the stride phase was short whereas the time of the swing phase was long according to the increasing ball speed. 2. The range of the stance was wide and the mediolateral direction of the stride was decreased according to the increasing ball speed. 3. In the three kinds of ball speed, the change of body weight was transferred to the center, the rear foot, and the front foot directions. The ball speed of 130km/h showed the high frequency of the suitable batting. At this ball speed, the movement of the body weight was shifted smoothly and the value of the Ground Reaction Force was large enough.

Experimental Study on Effects of Speed Error Disturbance on Reaction Wheel Control (속도 오차 외란이 반작용 휠 제어에 미치는 영향에 관한 실험적 연구)

  • Kim, Jichul;Lee, Hyungjun;Yoo, Jihoon;Oh, Hwasuk
    • Journal of Aerospace System Engineering
    • /
    • v.10 no.1
    • /
    • pp.95-102
    • /
    • 2016
  • There are many possible disturbance sources on such a spacecraft, but reaction wheel assembly (RWA) which is generally used for spacecraft attitude control is anticipated to be the largest. These effects on degradation of performance of spacecraft such as attitude stability. In reaction wheel, disturbance caused by imbalance and speed error. It is hard to emulate speed error disturbance because it is not coincide with wheel frequency. This paper concentrates on emulating and analyzing the speed error disturbance. Firstly, classify the causes that lead to speed error disturbance which generate RPM fluctuation. Secondly, simulated with disturbance driver module and reaction wheel assembly which are developed by Spacecraft Control Lab. Experimental investigations have been carried out to test the disturbance emulator module as a disturbance generator for RWA. Measurements and test have been conducted on various fault. Frequency analysis of test data show that speed error disturbance effects on wheel settling wheel speed or fluctuation type.

The Comparison of Simple Reaction Time between Young and Old Generation (청년층과 노인층의 단순반응속도 비교에 관한 연구)

  • Kwon Kyu-Sik;Choi Chul
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.27 no.4
    • /
    • pp.133-140
    • /
    • 2004
  • This study deals with human reaction speed according to human physical conditions (body size) such as head width, thickness, breast width, arm extent, and age. Especially, the results of this study are compared between young and old generation. According to this study, the thickness and extent factor do not have any correlation with human reaction speed, but width factors(head width, breast width, etc) have some correlation with human reaction speed. The result of this study can be used to find fitter person for a special job such as emergency condition job, sports man (because you can find a person having a good talent for it without test). Also, the purpose of this study is to find CNT (Channel Noise Time). The word of CNT is to explain the relation between Channel Noise and working speed. (Channel Noise is a kind of noise happening between the human information transmission channel.)

Error Analysis of Reaction Wheel Speed Detection Methods (반작용휠 속도측정방법의 오차 분석)

  • Oh, Shi-Hwan;Lee, Hye-Jin;Lee, Seon-Ho;Yong, Ki-Lyuk
    • Journal of Astronomy and Space Sciences
    • /
    • v.25 no.4
    • /
    • pp.481-490
    • /
    • 2008
  • Reaction wheel is one of the actuators for spacecraft attitude control, which generates torque by changing an inertial rotor speed inside of the wheel. In order to generate required torque accurately and estimate an accurate angular momentum, wheel speed should be measured as close to the actual speed as possible. In this study, two conventional speed detection methods for high speed motor with digital tacho pulse (Elapsed-time method and Pulse-count method) and their resolutions are analyzed. For satellite attitude maneuvering and control, reaction wheel shall be operated in bi directional and low speed operation is sometimes needed for emergency case. Thus the bias error at low speed with constant acceleration (or deceleration) is also analysed. As a result, the speed detection error of elapsed-time method is largely influenced upon the high-speed clock frequency at high speed and largely effected on the number of tacho pulses used in elapsed time calculation at low speed, respectively.

Safe Speed Limit of Robot Arm During Teaching and Maintenance Work (로보트 교시.정비작업시의 안전속도한계)

  • 김동하;임현교
    • Journal of the Korean Society of Safety
    • /
    • v.8 no.1
    • /
    • pp.64-70
    • /
    • 1993
  • Serious injuries and deaths due to multi-jointed robot occur when a man mispercepts. especially during robot teaching and maintenance work. Since industrial robots often operate with unpredictable motion patterns, establishment of safe speed limit of robot arm is indispensable. An experimental emergency conditions were simulated with a multi-jointed robot. and response characteristics of human operators were measured. The result showed that failure type, robot arm axis. and robot arm speed had significant effects on human reaction time. The reaction time was slightly increased with robot arm speed. though it showed somewhat different pattern owing to failure type. Furthermore the reaction time to the axis which could flex or extend. acting on a workpiece directly. was fastest and its standard deviation was small. The robot arm speed limit securing a‘possible contact zone’based on overrun distance was about 25cm/sec. and in this sense the validity of safe speed limits suggested by many precedent researchers were discussed.

  • PDF

The Effects of Shoes with Rolling Feature on the Foot Reaction Force and Pronation (신발의 굴림 특성이 족저반력 및 회내운동에 미치는 영향)

  • Shin, Hak-Soo
    • Korean Journal of Applied Biomechanics
    • /
    • v.17 no.3
    • /
    • pp.189-195
    • /
    • 2007
  • The purpose of this study was to analyze the effects of shoes with curved out-sole on the pressure, reaction force(sum of pressure) on foot and relations between the rolling speeds and pronation of foot. The foot pressure, reaction force and pressure center on the foot surface of shoe were measured with NOVEL padar system, and 3 type shoes were used to compare the position and speed of pressure center and the foot reaction force, which were s(target) shoe with soft cushions in middle part of out-sole and curved out-sole, m shoes with two type- soft, hard, hardness out-sole and curved out-sole and n shoes with flat out-sole. The subjects were 13 female university students, had weared the 3 type shoes for 6 weeks on two-weeks shifts for adaptation before experiment and put on 3-type shoes repeatedly and randomly and walked on treadmill with 3.5km/h and 80 steps/min. The data were captured with 30Hz and readjusted with 5kgf threshold reaction force. The results can be summarized as follow. 1. There were no difference in maximum reaction force on initial contact period and total foot impact, but statistical difference in maximum reaction force on takeoff period : s, m, n in ascending order. 2. There were some difference in rolling speeds for support periods. At initial contact, the rolling speed of s shoes was fastest but at periods between first and second maximum reaction force, that of m shoes fastest. 3. There was a negative relation between rolling speeds and the length of lever arm on initial reaction force related to pronation. It seems shoes with various curved shapes and hardness could make effects on the rolling features and the rolling speed also have some relationships with walking efficiency, absortion of impact and pronation.

Error Analysis of Reaction Wheel Speed Detection Methods Due to Non-uniformity of Tacho Pulse Duration (타코 펄스 불균일성이 존재하는 반작용휠의 속도측정 방법 오차 분석)

  • Oh, Shi-Hwan;Yong, Ki-Lyuk
    • Aerospace Engineering and Technology
    • /
    • v.8 no.2
    • /
    • pp.92-97
    • /
    • 2009
  • Two conventional speed detection methods (Elapsed-time method and Pulse-count method) are analyzed and compared for a high speed motor with digital tacho pulse with non-uniformity. In general, the elapsed-time method usually has better performance than a pulse-count method in case sufficiently high speed clock is used to measure the time difference. But if a tacho pulse non-uniformity exists in the reaction wheel - most of reaction wheel has a certain amount of non-uniformity - the accuracy of the elapsed-time method is degraded significantly. Thus the performance degradation is analyzed with respect to the level of non-uniformity of tacho pulse distribution and an allowable bound is suggested.

  • PDF

Adaptive Finite Element Analysis of Shock-induced Combustion (충격파를 동반한 연소현상에 관한 적응 격자 유한요소법 해석)

  • Moon, Su-Yeon;Lee, Chooung-Won;Sohn, Chang-Hyun
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.444-449
    • /
    • 2001
  • A numerical parametric study is conducted to simulate shock-induced combustion with a variation in freestream conditions. A steady combustion front is established if the freestream Mach number is above the Chapman-Jouguet speed of the mixture. On the other, an unsteady reaction front is established if the the freestream Mach number is below or at the Chapman-Jouguet speed of the mixture. The three cases have been simulated for Machs 4.18, 5.11, and 6.46 with a projectile diameter of 15 mm. Machs 4.18 and 5.11 shows an unsteady reaction front, whereas Mach 6.46 represents a steady reaction front. Thus Chapman-Jouguet speed is one of deciding factor for the instabilities to trigger.

  • PDF