• 제목/요약/키워드: Reaction Oxygen

Search Result 1,820, Processing Time 0.033 seconds

First Principles Computational Study of Surface Reactions Toward Design Concepts of High Functional Electrocatalysts for Oxygen Reduction Reaction in a Fuel Cell System

  • Hwang, Jeemin;Noh, Seunghyo;Kang, Joonhee;Han, Byungchan
    • Journal of the Korean institute of surface engineering
    • /
    • v.50 no.1
    • /
    • pp.1-9
    • /
    • 2017
  • Design of novel materials in renewable energy systems plays a key role in powering transportation vehicles and portable electronics. This review introduces the research work of first principles-based computational design for the materials over the last decade to accomplish the goal with less financial and temporal cost beyond the conventional approach, especially, focusing on electrocatalyst toward a proton exchange membrane fuel cell (PEMFC). It is proposed that the new method combined with experimental validation, can provide fundamental descriptors and mechanical understanding for optimal efficiency control of a whole system. Advancing these methods can even realize a computational platform of the materials genome, which can substantially reduce the time period from discovery to commercialization into markets of new materials.

Numerical Study of Ignition and Combustion Process of a Diesel Spray (Diesel spray의 점화와 연소 특성 해석)

  • 김용모;권영동;김후중;김세원
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.1
    • /
    • pp.15-26
    • /
    • 1997
  • The present study is mainly motivated to numerically simulate the autoignition and combustion process of a diesel spray in RCM and effects of design parameters on combustion and engine performance in the DI diesel engine using EGR. In case of the burning spray in RCM, special emphasis is given to the autoignition process coupled with the fluid mechanics and chemical reaction. Computations are carried out for a wide range of operating condition in terms of temperature, concentration of oxygen and carbon dioxide of the intake gas in the DI diesel engine. Numerical results indicate that the mixing process along the edges of spray jet has a crucial role for autoignition and combustion process. Temperature and concentration of O2 and CO2 of intake gas significantly influence the combustion characteristics and engine performance in the diesel/EGR environment.

  • PDF

A Study on the Tensile Characteristics of Spectra/Vinylester Composites with Ion Beam Treatment of Spectra Fibers. (이온빔으로 표면처리한 스펙트라/비닐에스테르 복합재의 인장특성)

  • 신동혁;이경엽
    • Journal of the Korean institute of surface engineering
    • /
    • v.35 no.4
    • /
    • pp.206-210
    • /
    • 2002
  • The use of Spectra fibers as fiber cloth is increasing because of their excellent impact resistance. However, a major limitation on the use of Spectra fibers is a chemical inertness. In this Study, Spectra fibers were surface-treated using Ar$^{+}$ ion beam under oxygen environment to improve the tensile property of Spectra/vinylester composites. The effect of surface treatment of Spectra fibers on the tensile property of Spectra/vinylester composites was determined from tensile tests using Spectra/vinylester composite specimens with and without a hole. It was found that the tensile stiffness and strength of surface-treated case were 22% and 17% higher than those of untreated case for specimens with no hole. The maximum load of surface-treated case was about 15% higher than that of untreated case for specimens with a hole.

Role of KOH in the One-Stage KOH Activation of Cellulosic Biomass

  • Oh, Gyu-Hwan;Yun, Chang-Hun;Park, Chong-Rae
    • Carbon letters
    • /
    • v.4 no.4
    • /
    • pp.180-184
    • /
    • 2003
  • The role of KOH in the one-stage KOH-activation of rice straws was studied using FTIR, XPS, TGA, and DTG techniques. It was found that at the impregnation, KOH extracts to some extent the lignin component from rice straw and reacts with hydroxyl groups. On heat-treatment, the impregnated KOH facilitates intermolecular condensation reaction on one hand but retards the thermal degradation of cellulose molecules on the other hand. The oxygen-containing surface functional groups newly created by oxidation of KOH may facilitate the bulk, not controlled, consumption of carbon atoms so that the effective porosities may not be able to be developed by the one-stage activation process.

  • PDF

A Study on the Development of Advanced Model to Predict the Sodium Pool Fire

  • Lee, Yong-Bum;Park, Seok-Ki
    • Nuclear Engineering and Technology
    • /
    • v.29 no.3
    • /
    • pp.240-250
    • /
    • 1997
  • Liquid sodium is widely used as a coolant of LMR(Liquid Metal Reactor) because of its physical and nuclear properties. However, the liquid sodium is very chemically reactive with oxygen and water so that the study on the sodium fire plays an important role in the LMR safety analysis. In this study, a sodium fire model is suggested to analyze the sodium pool fire where both the flame and the reaction products are considered. And also, sodium pool fire analysis computer code, SOPA, is developed. The sensitivity study on the experimental parameters such as the thermal radiation from flame to atmospheric gas, the vessel cooling and the duration of sodium spill was performed. The results showed good agreements with experimental data in the literature.

  • PDF

Petroleum Refinery Effluents Treatment by Advanced Oxidation Process with Methanol

  • Shoucheng, Wen
    • Journal of the Korean Chemical Society
    • /
    • v.58 no.1
    • /
    • pp.76-79
    • /
    • 2014
  • Petroleum refinery effluents are waste originating from industries primarily engaged in refining crude oil. It is a very complex compound of various oily wastes, water, heavy metals and so on. Conventional processes are unable to effectively remove the chemical oxygen demand (COD) of petroleum refinery effluents. Supercritical water oxidation (SCWO) was proposed to treat petroleum refinery effluents. In this paper, methanol was used to investigate co-oxidative effect of methanol on petroleum refinery effluents treatment. The results indicated that supercritical water oxidation is an effective process for petroleum refinery effluents treatment. Adding methanol caused an increase in COD removal. When reaction temperature is $440^{\circ}C$, residence time is 20 min, OE is 0.5 and initial COD is 40000 mg/L, and COD removal increases 8.5%.

Optimizing Oily Wastewater Treatment Via Wet Peroxide Oxidation Using Response Surface Methodology

  • Shi, Jianzhong;Wang, Xiuqing;Wang, Xiaoyin
    • Journal of the Korean Chemical Society
    • /
    • v.58 no.1
    • /
    • pp.80-84
    • /
    • 2014
  • The process of petroleum involves in a large amount of oily wastewater that contains high levels of chemical oxygen demand (COD) and toxic compounds. So they must be treated before their discharge into the receptor medium. In this paper, wet peroxide oxidation (WPO) was adopted to treat the oily wastewater. Central composite design, an experimental design for response surface methodology (RSM), was used to create a set of 31 experimental runs needed for optimizing of the operating conditions. Quadratic regression models with estimated coefficients were developed to describe the COD removals. The experimental results show that WPO could effectively reduce COD by 96.8% at the optimum conditions of temperature $290^{\circ}C$, $H_2O_2$ excess (HE) 0.8, the initial concentration of oily wastewater 3855 mg/L and reaction time 9 min. RSM could be effectively adopted to optimize the operating multifactors in complex WPO process.

Localized Corrosion of Zn-Plated Carbon Steel Used as a Fire Sprinkler Pipe

  • Lee, Jin Hee;Lee, You-Kee;Lee, Kyu Hwan;Kim, Dong-Kyu;Lee, Sung Gun;Lee, Sang Hwa;Kim, Insoo
    • Corrosion Science and Technology
    • /
    • v.8 no.4
    • /
    • pp.148-152
    • /
    • 2009
  • The failure of a Zn-plated carbon steel pipe that served as a fire sprinkler was investigated in terms of the pipe's corrosion products. The pipes leaked through holes formed beneath the tubercles. The formation of oxygen concentration cell involves colonization of metal surface by aerobic bacteria or other slime formers, and anodic reaction beneath tubercle is accelerated by the presence of SRB, leading to the formation of hole beneath tubercle.

Ohmic Contact Effect and Electrical Characteristics of ITO Thin Film Depending on SiOC Insulator (SiOC 절연박막 특성에 의존하는 ITO 투명박막의 전기적인 특성과 오믹접합의 효과)

  • Oh, Teresa
    • Korean Journal of Materials Research
    • /
    • v.25 no.7
    • /
    • pp.352-357
    • /
    • 2015
  • To research the characteristics of ITO film depending on a polarity of SiOC, specimens of ITO/SiOC/glass with metal-insulator-substrates (MIS) were prepared using a sputtering system. SiOC film with 17 sccm of oxygen flow rate became a non-polarity with low surface energy. The PL spectra of the ITO films deposited with various argon flow rates on SiOC film as non-polarity were found to lead to similar formations. However, the PL spectra of ITO deposited with various argon flow rates on SiOC with polarity were seen to have various features owing to the chemical reaction between ITO and the polar sites of SiOC. Most ITO/SiOC films non-linearly showed the Schottky contacts and current increased. But the ITO/SiOC film with a low current demonstrated an Ohmic contact.

Synthesis of a Novel Nitrogen-Phosphorus Flame Retardant Based on Phosphoramidate and Its Application to PC, PBT, EVA, and ABS

  • Nguyen, Congtranh;Kim, Jin-Hwan
    • Macromolecular Research
    • /
    • v.16 no.7
    • /
    • pp.620-625
    • /
    • 2008
  • A novel nitrogen-phosphorus compound, diphenyl piperazine-1,4-diylbis(methylphosphinate)(DPPMP) was synthesized via a two step reaction and its flame retarding efficiency as a single component additive was investigated. The success of synthesis was confirmed by FTIR and $^1H$ and $^{31}P$ NMR analysis. The product was mixed with polycarbonate (PC), poly(butylene terephtalate) (PBT), ethylene-vinyl-acetate copolymer (EVA), and acrylonitrile-butadiene-styrene copolymer (ABS). The flame-retarding efficiency was evaluated using the limiting oxygen index (LOI) and the UL-94 vertical test methods. The addition of DPPMP enhanced the flame retardancy of the polymers and the V-0 ratings were obtained for the polymers examined in this study at a loading of 7-30 wt%. The gas-phase flame retardancy mode of action was suggested for this material from the thermogrametry experiment results.